【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)B(4,2),BA⊥x軸于A.

(1)畫出將△OAB繞原點(diǎn)旋轉(zhuǎn)180°后所得的△OA1B1 , 并寫出點(diǎn)B1的坐標(biāo);
(2)將△OAB平移得到△O2A2B2 , 點(diǎn)A的對(duì)應(yīng)點(diǎn)是A2(2,﹣4),點(diǎn)B的對(duì)應(yīng)點(diǎn)B2在坐標(biāo)系中畫出△O2A2B2;并寫出B2的坐標(biāo);
(3)△OA1B1與△O2A2B2成中心對(duì)稱嗎?若是,請(qǐng)直接寫出對(duì)稱中心點(diǎn)P的坐標(biāo).

【答案】
(1)

解:△OA1B1如圖所示;B1(﹣4,﹣2);


(2)

解:

△OA2B2如圖所示;B2(2,﹣2);


(3)

解:△OA1B1與△O2A2B2成中心對(duì)稱,對(duì)稱中心P的坐標(biāo)是(﹣1,﹣2).


【解析】(1)將點(diǎn)A、B、C繞原點(diǎn)旋轉(zhuǎn)180°后得到對(duì)應(yīng)點(diǎn),順次連接可得;(2)將點(diǎn)A、B、C向左平移2個(gè)單位、向下平移4個(gè)單位即可得;(3)根據(jù)中心對(duì)稱的定義可得.
【考點(diǎn)精析】通過靈活運(yùn)用圖形的旋轉(zhuǎn)和旋轉(zhuǎn)的性質(zhì),掌握每一個(gè)點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動(dòng)了相同的角度,任意一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.旋轉(zhuǎn)的方向、角度、旋轉(zhuǎn)中心是它的三要素;①旋轉(zhuǎn)后對(duì)應(yīng)的線段長(zhǎng)短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對(duì)應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某高校學(xué)生會(huì)發(fā)現(xiàn)同學(xué)們就餐時(shí)剩余飯菜較多,浪費(fèi)嚴(yán)重,于是準(zhǔn)備在校內(nèi)倡導(dǎo)“光盤行動(dòng)”,讓同學(xué)們珍惜糧食,為了讓同學(xué)們理解這次活動(dòng)的重要性,校學(xué)生會(huì)在某天午餐后,隨機(jī)調(diào)查了部分同學(xué)就餐飯菜的剩余情況,并將結(jié)果統(tǒng)計(jì)后繪制成了如圖所示的不完整的統(tǒng)計(jì)圖.
(1)這次被調(diào)查的同學(xué)共有名;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)計(jì)算在扇形統(tǒng)計(jì)圖中剩大量飯菜所對(duì)應(yīng)扇形圓心角的度數(shù);
(4)校學(xué)生會(huì)通過數(shù)據(jù)分析,估計(jì)這次被調(diào)查的所有學(xué)生一餐浪費(fèi)的食物可以供200人用一餐.據(jù)此估算,該校20000名學(xué)生一餐浪費(fèi)的食物可供多少人食用一餐?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,丁軒同學(xué)在晚上由路燈AC走向路燈BD,當(dāng)他走到點(diǎn)P時(shí),發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當(dāng)他向前再步行20m到達(dá)Q點(diǎn)時(shí),發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部,已知丁軒同學(xué)的身高是1.5m,兩個(gè)路燈的高度都是9m,則兩路燈之間的距離是m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】頂點(diǎn)為(﹣ ,﹣ )的拋物線與y軸交于點(diǎn)A(0,﹣4),E(0,b)(b>﹣4)為y軸上一動(dòng)點(diǎn),過點(diǎn)E的直線y=x+b與拋物線交于B、C兩點(diǎn).
(1)求拋物線的解析式;
(2)①如圖1,當(dāng)b=0時(shí),求證:E是線段BC的中點(diǎn);
②當(dāng)b≠0時(shí),E還是線段BC的中點(diǎn)嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x﹣1與反比例函數(shù)y= 的圖像交于A、B兩點(diǎn),與x軸交于點(diǎn)C,已知點(diǎn)A的坐標(biāo)為(﹣1,m).
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P(n,﹣1)是反比例函數(shù)圖像上一點(diǎn),過點(diǎn)P作PE⊥x軸于點(diǎn)E,延長(zhǎng)EP交直線AB于點(diǎn)F,求△CEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+2x+m.
(1)如果二次函數(shù)的圖像與x軸有兩個(gè)交點(diǎn),求m的取值范圍;
(2)如圖,二次函數(shù)的圖像過點(diǎn)A(3,0),與y軸交于點(diǎn)B,求直線AB與這個(gè)二次函數(shù)的解析式;

(3)在直線AB上方的拋物線上有一動(dòng)點(diǎn)D,當(dāng)D與直線AB的距離DE最大時(shí),求點(diǎn)D的坐標(biāo),并求DE最大距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AB上一點(diǎn),分別以AC、BC為邊在AB的同側(cè)作等邊△HAC與等邊△DCB,連接DH.
(1)如圖1,當(dāng)∠DHC=90°時(shí),求 的值;
(2)在(1)的條件下,作點(diǎn)C關(guān)于直線DH的對(duì)稱點(diǎn)E,連接AE、BE,求證:CE平分∠AEB;
(3)現(xiàn)將圖1中△DCB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一定角度α(0°<α<90°),如圖2,點(diǎn)C關(guān)于直線DH的對(duì)稱點(diǎn)為E,則(2)中的結(jié)論是否成立并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】趙爽弦圖是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成的一個(gè)大正方形,如圖所示,若這四個(gè)全等直角三角形的兩條直角邊分別平行于x軸和y軸,大正方形的頂點(diǎn)B1、C1、C2、C3、…、Cn在直線y=﹣ x+ 上,頂點(diǎn)D1、D2、D3、…、Dn在x軸上,則第n個(gè)陰影小正方形的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y= 的圖象與一次函數(shù)y=ax+b的圖象相交于點(diǎn)A(1,4)和點(diǎn)B(n,﹣2).

(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)當(dāng)一次函數(shù)的值小于反比例函數(shù)的值時(shí),直接寫出x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案