【題目】在數(shù)軸上和有理數(shù) a、b、c 對應(yīng)的點的位置如圖所示,有下面四個結(jié)論:①abc<0;②|a﹣b|+|b﹣c|=|a﹣c|③(a﹣b)(b﹣c)(c﹣a)>0;④|a|<1﹣bc,其中正確的結(jié)論有______.
科目:初中數(shù)學 來源: 題型:
【題目】已知購買1盆甲種花卉和3盆乙種花卉共需125元,購買3盆甲種花卉和2盆乙種花卉共需165元.
(1)求購買1盆甲種花卉和購買1盆乙種花卉各需多少元?
(2)某校為綠化校園決定購買甲乙兩種花卉共60盆,要求購買的甲種花卉盆數(shù)不少于乙種花卉的 ,請幫該校設(shè)計一種最省錢的購買方案,并計算此時購買這兩種花卉所需的費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,數(shù)軸上線段AB=4(單位長度),CD=6(單位長度),點A在數(shù)軸上表示的數(shù)是-16,點C在數(shù)軸上表示的數(shù)是18
(1) 點B在數(shù)軸上表示的數(shù)是多少,點D在數(shù)軸上表示的數(shù)是多少,線段AD等于 多少;
(2) 若線段AB以4個單位長度/秒的速度向右勻速運動,同時線段CD以2個單位長度/秒的速度向左勻速運動,設(shè)運動時間為t秒
①若BC=6(單位長度),求t的值
②當0<t<5時,設(shè)M為AC中點,N為BD中點,求線段MN的長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平行四邊形ABCD的對角線AC和BD交于O點,分別過頂點B,C作兩對角線的平行線交于點E,得平行四邊形OBEC.
(1)如果四邊形ABCD為矩形(如圖),四邊形OBEC為何種四邊形?請證明你的結(jié)論;
(2)當四邊形ABCD是形時,四邊形OBEC是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O為矩形ABCD的對稱中心,AB=10cm,BC=12cm,點E、F、G分別從A、B、C三點同時出發(fā),沿矩形的邊按逆時針方向勻速運動,點E的運動速度為1cm/s,點F的運動速度為3cm/s,點G的運動速度為1.5cm/s,當點F到達點C(即點F與點C重合)時,三個點隨之停止運動.在運動過程中,△EBF關(guān)于直線EF的對稱圖形是△EB′F.設(shè)點E、F、G運動的時間為t(單位:s).
(1)當t=s時,四邊形EBFB′為正方形;
(2)若以點E、B、F為頂點的三角形與以點F,C,G為頂點的三角形相似,求t的值;
(3)是否存在實數(shù)t,使得點B′與點O重合?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,底邊BC為2 ,頂角A為120°的等腰△ABC中,DE垂直平分AB于D,則△ACE的周長為( )
A.2+2
B.2+
C.4
D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙、并三位同學參加數(shù)學綜合素質(zhì)測試各項成績?nèi)缦?/span>單位:分
同學 成績 | 數(shù)與代數(shù) | 圖形與幾何 | 統(tǒng)計與概率 | 綜合與實踐 |
甲 | 90 | 93 | 89 | 90 |
乙 | 94 | 92 | 94 | 86 |
丙 | 92 | 91 | 90 | 88 |
甲、乙、丙三位同學成績的中位數(shù)分別為______;
如果數(shù)與代數(shù)、圖形與幾何、統(tǒng)計與概率、綜合與實踐的成績按3:3:2:2計算,分別計算甲、乙、丙三位同學的數(shù)學綜合素質(zhì)測試成績,從成績看,應(yīng)推薦誰參加更高級別的比賽?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com