【題目】已知直線y=kx+b與x軸、y軸分別交于A、B兩點(diǎn),與反比例函數(shù)交于一象限內(nèi)的P( ,n),Q(4,m)兩點(diǎn),且tan∠BOP=
(1)求反比例函數(shù)和直線的函數(shù)表達(dá)式;
(2)求△OPQ的面積.

【答案】
(1)解:過(guò)P作PC⊥y軸于C,

∵P( ,n),

∴OC=n,PC= ,

∵tan∠BOP= ,

∴n=8,

∴P( ,8),

設(shè)反比例函數(shù)的解析式為y= ,

∴a=4,

∴反比例函數(shù)的解析式為y=

∴Q(4,1),

把P( ,8),Q(4,1)代入y=kx+b中得

,

∴直線的函數(shù)表達(dá)式為y=﹣2x+9


(2)解:過(guò)Q作OD⊥y軸于D,

則SPOQ=S四邊形PCDQ= +4)×(8﹣1)=


【解析】(1)過(guò)P作PC⊥y軸于C,由P( ,n),得到OC=n,PC= ,根據(jù)三角函數(shù)的定義得到P( ,8),于是得到反比例函數(shù)的解析式為y= ,Q(4,1),解方程組即可得到直線的函數(shù)表達(dá)式為y=﹣2x+9;(2)過(guò)Q作OD⊥y軸于D,于是得到SPOQ=S四邊形PCDQ=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于D點(diǎn),O是AB上一點(diǎn),經(jīng)過(guò)A、D兩點(diǎn)的⊙O分別交AB、AC于點(diǎn)E、F.
(1)用尺規(guī)補(bǔ)全圖形(保留作圖痕跡,不寫(xiě)作法);
(2)求證:BC與⊙O相切;
(3)當(dāng)AD=2 ,∠CAD=30°時(shí),求劣弧AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)務(wù)院辦公廳2015年3月16日發(fā)布了《中國(guó)足球改革的總體方案》,這是中國(guó)足球歷史上的重大改革.為了進(jìn)一步普及足球知識(shí),傳播足球文化,我市舉行了“足球進(jìn)校園”知識(shí)競(jìng)賽活動(dòng),為了解足球知識(shí)的普及情況,隨機(jī)抽取了部分獲獎(jiǎng)情況進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:

獲獎(jiǎng)等次

頻數(shù)

頻率

一等獎(jiǎng)

10

0.05

二等獎(jiǎng)

20

0.10

三等獎(jiǎng)

30

b

優(yōu)勝獎(jiǎng)

a

0.30

鼓勵(lì)獎(jiǎng)

80

0.40

請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:

(1)a= , b=
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若用扇形統(tǒng)計(jì)圖來(lái)描述獲獎(jiǎng)分布情況,問(wèn)獲得優(yōu)勝獎(jiǎng)對(duì)應(yīng)的扇形圓心角的度數(shù)是多少?
(4)在這次競(jìng)賽中,甲、乙、丙、丁四位同學(xué)都獲得一等獎(jiǎng),若從這四位同學(xué)中隨機(jī)選取兩位同學(xué)代表我市參加上一級(jí)競(jìng)賽,請(qǐng)用樹(shù)狀圖或列表的方法,計(jì)算恰好選中甲、乙二人的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(x1 , y1),點(diǎn)Q的坐標(biāo)為(x2 , y2),且x1≠x2 , y1≠y2 , 若P,Q為某個(gè)矩形的兩個(gè)頂點(diǎn),且該矩形的邊均與某條坐標(biāo)軸垂直,則稱(chēng)該矩形為點(diǎn)P,Q的“相關(guān)矩形”,如圖為點(diǎn)P,Q的“相關(guān)矩形”示意圖.
(1)已知點(diǎn)A的坐標(biāo)為(1,0), ①若點(diǎn)B的坐標(biāo)為(3,1),求點(diǎn)A,B的“相關(guān)矩形”的面積;
②點(diǎn)C在直線x=3上,若點(diǎn)A,C的“相關(guān)矩形”為正方形,求直線AC的表達(dá)式;
(2)⊙O的半徑為 ,點(diǎn)M的坐標(biāo)為(m,3),若在⊙O上存在一點(diǎn)N,使得點(diǎn)M,N的“相關(guān)矩形”為正方形,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程:
(1)(4x﹣1)2﹣9=0
(2)3(x﹣2)2=2﹣x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)初三(1)班共有40名同學(xué),在一次30秒跳繩測(cè)試中他們的成績(jī)統(tǒng)計(jì)如下表:

跳繩數(shù)/個(gè)

81

85

90

93

95

98

100

數(shù)

1

2

8

11

5

將這些數(shù)據(jù)按組距5(個(gè))分組,繪制成如圖的頻數(shù)分布直方圖(不完整).
(1)將表中空缺的數(shù)據(jù)填寫(xiě)完整,并補(bǔ)全頻數(shù)分布直方圖;
(2)這個(gè)班同學(xué)這次跳繩成績(jī)的眾數(shù)是個(gè),中位數(shù)是個(gè);
(3)若跳滿(mǎn)90個(gè)可得滿(mǎn)分,學(xué)校初三年級(jí)共有720人,試估計(jì)該中學(xué)初三年級(jí)還有多少人跳繩不能得滿(mǎn)分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,O為直線AB上一點(diǎn),過(guò)點(diǎn)O作射線OC,∠AOC=30°,將一直角三角板(∠M=30°)的直角頂點(diǎn)放在點(diǎn)O處,一邊ON在射線OA上,另一邊OM與OC都在直線AB的上方.
(1)將圖1中的三角板繞點(diǎn)O以每秒3°的速度沿順時(shí)針?lè)较蛐D(zhuǎn)一周.如圖2,經(jīng)過(guò)t秒后,OM恰好平分∠BOC.①求t的值;②此時(shí)ON是否平分∠AOC?請(qǐng)說(shuō)明理由;
(2)在(1)問(wèn)的基礎(chǔ)上,若三角板在轉(zhuǎn)動(dòng)的同時(shí),射線OC也繞O點(diǎn)以每秒6°的速度沿順時(shí)針?lè)较蛐D(zhuǎn)一周,如圖3,那么經(jīng)過(guò)多長(zhǎng)時(shí)間OC平分∠MON?請(qǐng)說(shuō)明理由;
(3)在(2)問(wèn)的基礎(chǔ)上,經(jīng)過(guò)多長(zhǎng)時(shí)間OC平分∠MOB?請(qǐng)畫(huà)圖并說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某小區(qū)樓房附近有一個(gè)斜坡,小張發(fā)現(xiàn)樓房在水平地面與斜坡處形成的投影中,在斜坡上的影子長(zhǎng)CD=6m,坡角到樓房的距離CB=8m.在D點(diǎn)處觀察點(diǎn)A的仰角為60°,已知坡角為30°,你能求出樓房AB的高度嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,將拋物線y=x2+2x+3繞著它與y軸的交點(diǎn)旋轉(zhuǎn)180°,所得拋物線的解析式是(
A.y=﹣(x+1)2+2
B.y=﹣(x﹣1)2+4
C.y=﹣(x﹣1)2+2
D.y=﹣(x+1)2+4

查看答案和解析>>

同步練習(xí)冊(cè)答案