如圖,在Rt△ABC中∠ABC=90°,AC的垂直平分線交BC于D點(diǎn),交AC于E點(diǎn),OC=OD.
(1)若,DC=4,求AB的長;
(2)連接BE,若BE是△DEC的外接圓的切線,求∠C的度數(shù).

【答案】分析:(1)由于DE垂直平分AC,那么AE=EC,∠DEC=90°,而∠ABC=∠DEC=90°,∠C=∠C,易證,△ABC∽△DEC,∠A=∠CDE,于是sin∠CDE=,AB:AC=DE:DC,而DC=4,易求EC,利用勾股定理可求DE,易知AC=6,利用相似三角形中的比例線段可求AB;
(2)連接OE,由于∠DEC=90°,那么∠EDC+∠C=90°,又BE是切線,那么∠BEO=90°,于是∠EOB+∠EBC=90°,而BE是直角三角形斜邊上的中線,那么BE=CE,于是∠EBC=∠C,從而有∠EOB=∠EDC,又OE=OD,易證△DEO是等邊三角形,那么∠EDC=60°,從而可求∠C.
解答:解:(1)∵AC的垂直平分線交BC于D點(diǎn),交AC于E點(diǎn),
∴∠DEC=90°,AE=EC,
∵∠ABC=90°,∠C=∠C,
∴∠A=∠CDE,△ABC∽△DEC,
∴sin∠CDE=,AB:AC=DE:DC,
∵DC=4,
∴EC=3,
∴DE==,
∴AC=6,
∴AB:6=:4,
∴AB=;

(2)連接OE,
∵∠DEC=90°,
∴∠EDC+∠C=90°,
∵BE是⊙O的切線,
∴∠BEO=90°,
∴∠EOB+∠EBC=90°,
∵E是AC的中點(diǎn),∠ABC=90°,
∴BE=EC,
∴∠EBC=∠C,
∴∠EOB=∠EDC,
又∵OE=OD,
∴△DOE是等邊三角形,
∴∠EDC=60°,
∴∠C=30°.
點(diǎn)評:本題考查了切線的性質(zhì)、線段垂直平分線的性質(zhì)、相似三角形的判定和性質(zhì)、勾股定理、等邊三角形的判定和性質(zhì).解題的關(guān)鍵是連接OE,構(gòu)造直角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過點(diǎn)D,且交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個(gè)30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動(dòng),在折線DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案