【題目】如圖,二次函數(shù)y=x2+bx+c(c≠0)的圖象經(jīng)過(guò)點(diǎn)A(-2,m)(m<0),與y軸交于點(diǎn)B,與x軸交于C、D兩點(diǎn)(C在D的左側(cè)),AB//x軸,且AB:OB=2:3.
(1)求m的值;
(2)求二次函數(shù)的解析式;
(3)在線(xiàn)段BC上是否存在點(diǎn)P,使ΔPOC為等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)m=-3;(2) ;(3) 存在點(diǎn),,,使為等腰三角形,理由見(jiàn)解析
【解析】
(1)由AB∥x軸,A(﹣2,m),可得AB=2,又由AB:OB=2:3,即可求得點(diǎn)B的坐標(biāo),則可求得m的值;
(2)由二次函數(shù)與y軸的交于點(diǎn)B,可求得c的值,又由圖象過(guò)點(diǎn)A(﹣2,﹣3),將其代入函數(shù)解析式,即可求得b的值,則可得此二次函數(shù)解析式;
(3)由二次函數(shù)的圖象與x軸交于C、D兩點(diǎn)(點(diǎn)C在左惻),可得當(dāng)y=0即可求得C的坐標(biāo),若△POC為等腰三角形,則可分別從①當(dāng)PC=PO時(shí),②當(dāng)PO=CO時(shí),③當(dāng)PC=CO時(shí)去分析,即可求得滿(mǎn)足條件的點(diǎn)P的坐標(biāo).
(1)∵AB∥x軸,A(﹣2,m),∴AB=2.
又∵AB:OB=2:3,∴OB=3,∴點(diǎn)B的坐標(biāo)為(0,﹣3),∴m=﹣3;
(2)∵二次函數(shù)與y軸的交于點(diǎn)B,∴c=﹣3.
又∵圖象過(guò)點(diǎn)A(﹣2,﹣3),∴﹣3=4﹣2b﹣3,∴b=2,∴二次函數(shù)解析式為y=x2+2x﹣3;
(3)當(dāng)y=0時(shí),有x2+2x﹣3=0,解得x1=﹣3,x2=1,由題意得:C(﹣3,0).
若△POC為等腰三角形,則有:
①當(dāng)PC=PO時(shí),點(diǎn)P();
②當(dāng)PO=CO時(shí),點(diǎn)P(0,﹣3);
③當(dāng)PC=CO時(shí),設(shè)直線(xiàn)BC的函數(shù)解析式為y=kx+n,則有,解得:,∴直線(xiàn)BC的函數(shù)解析式為y=﹣x﹣3.
設(shè)點(diǎn)P(x,﹣x﹣3),由PC=CO,得:[﹣(x+3)]2+[﹣(﹣x﹣3)]2=32,解得:x1=﹣3,x2=﹣3(不合題意,舍去),∴P(﹣3).
綜上所述:存在點(diǎn)P()或P(0,﹣3)或P(﹣3),使△POC為等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線(xiàn)上有動(dòng)點(diǎn)E,連結(jié)DE,邊BC上有一定點(diǎn)F,連接EF,已知AB=3cm,AD=4cm,設(shè)A,E兩點(diǎn)間的距離為xcm,D,E兩點(diǎn)間的距離為y1cm,E,F兩點(diǎn)間的距離為y2cm.小勝根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小勝的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫(huà)圖、測(cè)量,得到x與y的幾組對(duì)應(yīng)值;
(2)在同一平面直角坐標(biāo)系xOy中,描出補(bǔ)全后的表中各組數(shù)值所對(duì)應(yīng)的點(diǎn)(x,y1),(x,y2),并畫(huà)出函數(shù)y1,y2的圖象;
(3)結(jié)合函數(shù)圖象,解決問(wèn)題:當(dāng)DE>EF時(shí),AE的長(zhǎng)度范圍約為多少cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(﹣3,1),B(﹣1,﹣1),C(﹣2,2).
(1)畫(huà)出△ABC關(guān)于y軸對(duì)稱(chēng)的△A1B1C1,并寫(xiě)出點(diǎn)A1,B1,C1的坐標(biāo);
(2)畫(huà)出△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°所得到的△A2B2C2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小張騎自行車(chē)勻速?gòu)募椎氐揭业,在途中因故停留了一段時(shí)間后,仍按原速騎行,小李騎摩托車(chē)比小張晚出發(fā)一段時(shí)間,以800米/分的速度勻速?gòu)囊业氐郊椎,兩人距離乙地的路程y(米)與小張出發(fā)后的時(shí)間x(分)之間的函數(shù)圖象如圖所示.
(1)求小張騎自行車(chē)的速度;
(2)求小張停留后再出發(fā)時(shí)y與x之間的函數(shù)表達(dá)式;
(3)求小張與小李相遇時(shí)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)交x軸于點(diǎn)和點(diǎn)B,交y軸于點(diǎn).
(1)求拋物線(xiàn)的解析式;
(2)在拋物線(xiàn)上找出點(diǎn)P,使,求點(diǎn)P的坐標(biāo);
(3)將直線(xiàn)AC沿x軸的正方向平移,平移后的直線(xiàn)交y軸于點(diǎn)M,交拋物線(xiàn)于點(diǎn)N.當(dāng)四邊形ACMN為等腰梯形時(shí),求點(diǎn)M、N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知開(kāi)口向下的拋物線(xiàn)y=ax2-2ax+2與y軸的交點(diǎn)為A,頂點(diǎn)為B,對(duì)稱(chēng)軸與x軸的交點(diǎn)為C,點(diǎn)A與點(diǎn)D關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng),直線(xiàn)BD與x軸交于點(diǎn)M,直線(xiàn)AB與直線(xiàn)OD交于點(diǎn)N.
(1)求點(diǎn)D的坐標(biāo).
(2)求點(diǎn)M的坐標(biāo)(用含a的代數(shù)式表示).
(3)當(dāng)點(diǎn)N在第一象限,且∠OMB=∠ONA時(shí),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市自從去年九月實(shí)施高中新課程改革以來(lái),高中學(xué)生在課堂上的“自主學(xué)習(xí)、合作交流”能力有了很大提高.張老師為了了解所教班級(jí)學(xué)生的“自主學(xué)習(xí)、合作交流”的具體情況,對(duì)該班部分學(xué)生進(jìn)行了為期一個(gè)月的跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類(lèi),A:特別好;B:好;C:一般;D:較差,且將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:
(1)本次調(diào)查中,張老師一共調(diào)查了 名學(xué)生,其中C類(lèi)女生有 名;
(2)請(qǐng)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)為了共同進(jìn)步,張老師想從被調(diào)查的A類(lèi)和D類(lèi)學(xué)生中分別選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請(qǐng)用列表法或畫(huà)樹(shù)狀圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O中,AC為直徑,MA,MB分別切⊙O于點(diǎn)A,B,∠BAC=25°,則∠AMB的大小為( 。
A. 25°B. 30°C. 45°D. 50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“低碳生活,綠色出行”的理念已深入人心,現(xiàn)在越來(lái)越多的人選擇騎自行車(chē)上下班或外出旅游.周末,小紅相約到郊外游玩,她從家出發(fā)0.5小時(shí)后到達(dá)甲地,玩一段時(shí)間后按原速前往乙地,剛到達(dá)乙地,接到媽媽電話(huà),快速返回家中.小紅從家出發(fā)到返回家中,行進(jìn)路程y(km)隨時(shí)間x(h)變化的函數(shù)圖象大致如圖所示.
(1)小紅從甲地到乙地騎車(chē)的速度為 km/h;
(2)當(dāng)1.5≤x≤2.5時(shí),求出路程y(km)關(guān)于時(shí)間x(h)的函數(shù)解析式;并求乙地離小紅家多少千米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com