【題目】已知x,x是關(guān)于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個實數(shù)根,
①求m取值范圍;
②若x12+x22=15,求實數(shù)m的值;
科目:初中數(shù)學 來源: 題型:
【題目】如圖,分別以直角的斜邊AB,直角邊AC為邊向外作等邊和等邊,F為AB的中點,DE與AB交于點G,EF與AC交于點H,,.給出如下結(jié)論:
①EF⊥AC; ②四邊形ADFE為菱形; ③; ④;
其中正確結(jié)論的是( )
A. ①②③B. ②③④C. ①③④D. ①②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某新型高科技商品,每件的售價比進價多6元,5件的進價相當于4件的售價,每天可售出200件,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件商品漲價1元,每天就會少賣5件.
(1)該商品的售價和進價分別是多少元?
(2)設(shè)每天的銷售利潤為w元,每件商品漲價x元,則當售價為多少元時,該商品每天的銷售利潤最大,最大利潤為多少元?
(3)為增加銷售利潤,營銷部推出了以下兩種銷售方案:方案一:每件商品漲價不超過8元;方案二:每件商品的利潤至少為24元,請比較哪種方案的銷售利潤更高,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.阜陽市某家快遞公司,2017年3月份與5月份完成投遞的快遞總件數(shù)分別為10萬件和12.1萬件.現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長率相同.
(1)求該快遞公司投遞快遞總件數(shù)的月平均增長率?
(2) 如果平均每人每月最多可投遞快遞0.6萬件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務(wù)員能否完成2017年6月份的快遞投遞任務(wù)?如果不能,請問至少需要增加幾名業(yè)務(wù)員?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,AC=BC,AB=8,點D為AB的中點,若直角MDN繞點D旋轉(zhuǎn),分別交AC于點E,交BC于F,則下列說法:①AE=CF;②EC+CF=4;③DE=DF;④若△ECF面積為一個定值,則EF長也是一個定值,其中正確的結(jié)論是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖 1,已知拋物線 y ax bx c 經(jīng)過 A3,0,B 1,0 ,C 0,3 三點,其頂點為D,對稱軸是直線l , l 與 x 軸交于點 H .
(1)求該拋物線的解析式;
(2)若點 P 是該拋物線對稱軸l 上的一個動點,求PBC 周長的最小值;
(3)如圖 2,若 E 是線段 AD 上的一個動點( E 與 A, D 不重合),過 E 點作平行于 y 軸的直線交拋物線于點 F ,交 x 軸于點G ,設(shè)點 E 的橫坐標為m ,四邊形 AODF 的面積為 S 。
①求 S 與 m 的函數(shù)關(guān)系式;
② S 是否存在最大值,若存在,求出最大值及此時點 E 的坐標,若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD中,AB=8,AD=6,E為BC邊上一點,將△ABE沿著AE翻折,點B落在點F處,當△EFC為直角三角形時BE=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在2014年巴西世界杯足球賽前夕,某體育用品店購進一批單價為40元的球服,如果按單價60元銷售,那么一個月內(nèi)可售出240套,根據(jù)銷售經(jīng)驗,提高銷售單價會導致銷售量的減少,即銷售單價每提高5元,銷售量相應(yīng)減少20套,設(shè)銷售單價為x(x60)元,銷售量為y套.
(1)求出y與x的函數(shù)關(guān)系式;
(2)當銷售單價為多少元時,且銷售額為14000元?
(3)當銷售單價為多少元時,才能在一個月內(nèi)獲得最大利潤,最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com