【題目】2017寧夏)在邊長為2的等邊三角形ABC中,PBC邊上任意一點(diǎn),過點(diǎn) P分別作 PMA B,PNAC,M、N分別為垂足.

1)求證:不論點(diǎn)PBC邊的何處時(shí)都有PM+PN的長恰好等于三角形ABC一邊上的高;

2)當(dāng)BP的長為何值時(shí),四邊形AMPN的面積最大,并求出最大值.

【答案】【(1)證明見解析;(2)當(dāng)BP=1時(shí),四邊形AMPN的面積最大,最大值是

【解析】

試題(1)連接AP,過CCDABD,根據(jù)等邊三角形的性質(zhì)得到AB=AC,根據(jù)三角形的面積公式列方程即可得到結(jié)論;

(2)設(shè)BP=x,則CP=2﹣x,由ABC是等邊三角形,得到∠B=C=60°,解直角三角形得到BM=x,PM=x,CN=(2﹣x),PN=(2﹣x),根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.

試題解析:(1)連接AP,過CCDABD

∵△ABC是等邊三角形,∴AB=AC,SABC=SABP+SACP, ABCD=ABPM+ACPN,PM+PN=CD,即不論點(diǎn)PBC邊的何處時(shí)都有PM+PN的長恰好等于三角形ABC一邊上的高;

(2)設(shè)BP=x,則CP=2﹣x∵△ABC是等邊三角形,∴∠B=C=60°,PMAB,PNACBM=x,PM=x,CN=(2﹣x),PN=(2﹣x),∴四邊形AMPN的面積=×(2﹣xx+×[2﹣(2﹣x)] (2﹣x)= =∴當(dāng)BP=1時(shí),四邊形AMPN的面積最大,最大值是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCADE均為等邊三角形,點(diǎn)OAC的中點(diǎn),點(diǎn)DA射線BO上,連接OE,EC,若AB4,則OE的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形窗戶邊框ABCD由矩形AEFD,矩形BNME,矩形CFMN組成,其中AEBE=13.已知制作一個(gè)窗戶邊框的材料的總長是6米,設(shè)BC=x(),窗戶邊框ABCD的面積為S(2)

(1)①用x的代數(shù)式表示AB;

②求x的取值范圍.

(2)求當(dāng)S達(dá)到最大時(shí),AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線軸的交點(diǎn)分別為1,0)、3,0),與軸的交點(diǎn)為

1)求拋物線的解析式和頂點(diǎn)坐標(biāo);

2)點(diǎn)4,)和)為拋物線上的兩點(diǎn),當(dāng)時(shí),寫出的取值范圍;

3)在拋物線的對稱軸上是否存在點(diǎn),使最大?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角板(其中,,)如圖擺放,所對的直角邊與的斜邊恰好重合。以為直徑的圓經(jīng)過點(diǎn)C,且與相交于點(diǎn)E,連接,連接并延長交F.

1)求證:平分;

2)求的面積的比值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的口袋里裝有只有顏色不同的黑、白兩種顏色的球共10只,某學(xué)習(xí)小組做摸球?qū)嶒?yàn),將球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回袋中,不斷重復(fù).下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):

摸球的次數(shù)

100

150

200

500

800

1000

摸到白球的次數(shù)

58

96

116

295

484

601

摸到白球的頻率

0.58

0.64

0.58

0.59

0.605

0.601

1)請估計(jì):當(dāng)很大時(shí),摸到白球的頻率將會接近   ;(保留二個(gè)有效數(shù)字)

2)試估算口袋中黑、白兩種顏色的球各有多少只?

3)請畫樹狀圖或列表計(jì)算:從中一次摸兩只球,這兩只球顏色不同的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一組鄰邊相等的凸四邊形叫做和睦四邊形,寓意是全世界和平共處,睦鄰友好,共同發(fā)展.如菱形,正方形等都是和睦四邊形”.

1)如圖1BD平分∠ABC,ADBC,求證:四邊形ABCD和睦四邊形

2)如圖2,直線x軸、y軸分別交于A、B兩點(diǎn),點(diǎn)P、Q分別是線段OA、AB上的動(dòng)點(diǎn).點(diǎn)P從點(diǎn)A出發(fā),以每秒4個(gè)單位長度的速度向點(diǎn)O運(yùn)動(dòng).點(diǎn)Q從點(diǎn)A出發(fā),以每秒5個(gè)單位長度的速度向點(diǎn)B運(yùn)動(dòng).P、Q兩點(diǎn)同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t.當(dāng)四邊形BOPQ和睦四邊形時(shí),求t的值;

3)如圖3,拋物線軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn),拋物線的頂點(diǎn)為點(diǎn)D.當(dāng)四邊形COBD和睦四邊形,且CD=OC.拋物線還滿足:①;②頂點(diǎn)D在以AB為直徑的圓上. 點(diǎn)是拋物線上任意一點(diǎn),且.恒成立,求m的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明同學(xué)用自制的直角三角形紙板DEF測量樹的高度AB,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點(diǎn)B在同一直線上,已知紙板的兩條直角邊DE50 cm,EF25 cm,測得邊DF離地面的高度AC1.6 m,CD10 m,則樹高AB等于(  )

A. 4 m

B. 5 m

C. 6.6 m

D. 7.7 m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)D為銳角ABC內(nèi)一點(diǎn),∠ADB=ACB+90°,過點(diǎn)BBEBD,BE=BD,連接EC

1)求∠CAD+CBD的度數(shù);

2)若,

①求證:ACD∽△BCE;

②求的值.

查看答案和解析>>

同步練習(xí)冊答案