【題目】將一副三角板(其中,)如圖擺放,所對(duì)的直角邊與的斜邊恰好重合。以為直徑的圓經(jīng)過點(diǎn)C,且與相交于點(diǎn)E,連接,連接并延長(zhǎng)交F.

1)求證:平分

2)求的面積的比值.

【答案】1)證明見解析;(2.

【解析】

1)根據(jù)同弧所對(duì)的圓周角相等可得,根據(jù)三角形的外角性質(zhì)可得,由直徑所對(duì)的圓周角為90°得∠BED=AEB=90°,所以可得,結(jié)論可證;

2)過FFGBEFHAD,分別于BEAD相交于G、H,根據(jù)角平分線的性質(zhì)可得FG=FH,表示的面積的比值,借助正切可求得它們的比值為.

1)∵AB的直徑,

∴∠BED=AEB=90°,

,,

,

,

,

,平分.

2)如圖,過FFGBEFHAD,分別于BE、AD相交于G、H.

∵∠BED=90°,∠D=60°,

∴在RtBDE中,,

FGBE, FHAD平分,

FG=FH,

,的面積的比值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,分別切的三邊、、于點(diǎn)、、,若,

1)求的長(zhǎng);

2)求的半徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知不等臂蹺蹺板AB長(zhǎng)為3,蹺蹺板AB的支撐點(diǎn)O到地面上的點(diǎn)H的距高OH=0.6米。當(dāng)蹺蹺板AB的一個(gè)端點(diǎn)A碰到地面時(shí),AB與地面上的直線AH的夾角∠OAH的度數(shù)為30°.

1)當(dāng)AB的另一個(gè)端點(diǎn)B碰到地面時(shí)(如右圖),蹺蹺板AB與直線BH的夾角∠ABH的正弦值是多少?

2)當(dāng)AB的另一個(gè)端點(diǎn)B碰到地面時(shí)(如右圖),點(diǎn)A到直線BH的距離是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊的邊AB與正方形DEFG的邊長(zhǎng)均為2,且ABDE在同一條直線上,開始時(shí)點(diǎn)B與點(diǎn)D重合,讓沿這條直線向右平移,直到點(diǎn)B與點(diǎn)E重合為止,設(shè)BD的長(zhǎng)為x,與正方形DEFG重疊部分(圖中陰影部分)的面積為y,則yx之間的函數(shù)關(guān)系的圖象大致是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形中,,點(diǎn)D延長(zhǎng)線上一點(diǎn),且,點(diǎn)E直線上,當(dāng)時(shí),的長(zhǎng)為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017寧夏)在邊長(zhǎng)為2的等邊三角形ABC中,PBC邊上任意一點(diǎn),過點(diǎn) P分別作 PMA BPNAC,M、N分別為垂足.

1)求證:不論點(diǎn)PBC邊的何處時(shí)都有PM+PN的長(zhǎng)恰好等于三角形ABC一邊上的高;

2)當(dāng)BP的長(zhǎng)為何值時(shí),四邊形AMPN的面積最大,并求出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)B的坐標(biāo)為(0,3),在第一象限內(nèi)找一點(diǎn)P(a,b) ,使PAB為等邊三角形,則2(a-b)=___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的口袋里裝有只有顏色不同的黑、白兩種顏色的球共5只.某學(xué)習(xí)小組做摸球?qū)嶒?yàn),將球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回袋中,不斷重復(fù).下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):

摸球的次數(shù) n

100

150

200

500

800

1000

摸到白球的次數(shù) m

58

96

116

295

484

601

摸到白球的頻率

0.58

0.64

0.58

0.59

0.605

0.601

1)請(qǐng)估計(jì):當(dāng)n很大時(shí),摸到白球的頻率將會(huì)接近  (結(jié)果精確到0.1);

2)試估算口袋中黑球有  只,白球有  只;

3)在(2)的結(jié)論下,請(qǐng)你用列表或樹狀圖求出隨機(jī)摸出兩個(gè)球都是白球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E是邊長(zhǎng)為2的正方形ABCD的邊BC上的一動(dòng)點(diǎn)(不與端點(diǎn)重合),將ABE沿AE翻折至AFE的位置,若CDF是等腰三角形,則BE=________

查看答案和解析>>

同步練習(xí)冊(cè)答案