【題目】如圖,矩形ABCD中,AB=5,AD=3.點(diǎn)E是CD上的動(dòng)點(diǎn),以AE為直徑的⊙O與AB交于點(diǎn)F,過點(diǎn)F作FG⊥BE于點(diǎn)G.
(1)若E是CD的中點(diǎn)時(shí),證明:FG是⊙O的切線
(2)試探究:BE能否與⊙O相切?若能,求出此時(shí)DE的長(zhǎng);若不能,請(qǐng)說明理由.
【答案】(1)見解析;(2)點(diǎn)E不存在,BE不能與⊙O相切,理由見解析
【解析】
(1)要證明FG是⊙O的切線只要證明OF⊥FG即可;
(2)先假設(shè)BE能與⊙O相切,則AE⊥BE,即∠AEB=90°.設(shè)DE的長(zhǎng)為x,然后用x表示出CE的長(zhǎng),根據(jù)勾股定理可得出一個(gè)關(guān)于x的一元二次方程,若BE能與⊙O相切,那么方程的解即為DE的長(zhǎng);若方程無解,則說明BE不可能與⊙O相切.
(1)連接OF、EF;
∵AE是⊙O的直徑,AF⊥EF,
∵四邊形ABCD是矩形,
∴∠DAB=∠D=90°,AB=CD,
∴四邊形ADEF是矩形,
∴AF=DE,
∴EC=BF,
∵E是CD的中點(diǎn),
∴F是AB的中點(diǎn),
∴OF∥BE,
∵FG⊥BE,
∴OF⊥FG,
∴FG為⊙O的切線.
(2)若BE能與⊙O相切,因AE是⊙O的直徑,則AE⊥BE,∠AEB=90°.
設(shè)DE=x,則EC=5﹣x.
由勾股定理得:AE2+EB2=AB2,
即(9+x2)+[(5﹣x)2+9]=25,
整理得x2﹣5x+9=0,
∵b2﹣4ac=25﹣36=﹣11<0,
∴該方程無實(shí)數(shù)根,
∴點(diǎn)E不存在,BE不能與⊙O相切.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形MNOK和正六邊形ABCDEF邊長(zhǎng)均為1,把正方形放在正六邊形中,使OK邊與AB邊重合,如圖所示:按下列步驟操作:將正方形在正六邊形中繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使KM邊與BC邊重合,完成第一次旋轉(zhuǎn);再繞點(diǎn)C順時(shí)針旋轉(zhuǎn),使MN邊與CD邊重合,完成第二次旋轉(zhuǎn)……連續(xù)經(jīng)過六次旋轉(zhuǎn).在旋轉(zhuǎn)的過程中,當(dāng)正方形和正六邊形的邊重合時(shí),點(diǎn)B,M間的距離可能是( )
A. 0.5B. 0.7C. ﹣1D. ﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 先化簡(jiǎn),再求值:
(1)[x2+y2﹣(x+y)2+2x(x﹣y)]÷4x,其中x﹣2y=2
(2)(mn+2)(mn﹣2)﹣(mn﹣1)2,其中m=2,n=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙的半徑為5,AB為直徑,C是圓周上一點(diǎn)。
(1)求∠ACB的度數(shù)。
(2)若AC=AO,求陰影部分的面積(用含的代數(shù)式表示).
(3)當(dāng)C點(diǎn)在圓周上移動(dòng)時(shí),AC、BC、AB三條線段的長(zhǎng)度之間存在著恒定不變的關(guān)系,請(qǐng)你寫出一種這樣的關(guān)系,并說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為做好漢江防汛工作,防汛指揮部決定對(duì)一段長(zhǎng)為2500m重點(diǎn)堤段利用沙石和土進(jìn)行加固加寬.專家提供的方案是:使背水坡的坡度由原來的1:1變?yōu)?/span>1:1.5,如圖,若CD∥BA,CD=4米,鉛直高DE=8米.
(1)求加固加寬這一重點(diǎn)堤段需沙石和土方數(shù)是多少?
(2)某運(yùn)輸隊(duì)承包這項(xiàng)沙石和土的運(yùn)送工程,根據(jù)施工方計(jì)劃在一定時(shí)間內(nèi)完成,按計(jì)劃工作5天后,增加了設(shè)備,工效提高到原來的1.5倍,結(jié)果提前了5天完成任務(wù),問按原計(jì)劃每天需運(yùn)送沙石和土多少m3?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊AD⊥y軸,垂足為點(diǎn)E,頂點(diǎn)A在第二象限,頂點(diǎn)B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象同時(shí)經(jīng)過頂點(diǎn)C,D.若點(diǎn)C的橫坐標(biāo)為5,BE=3DE,則k的值為( 。
A. B. 3 C. D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具商店銷售功能相同的A、B兩種品牌的計(jì)算器,購(gòu)買2個(gè)A品牌和3個(gè)B品牌的計(jì)算器共需156元;購(gòu)買3個(gè)A品牌和1個(gè)B品牌的計(jì)算器共需122元.
(1)求這兩種品牌計(jì)算器的單價(jià);
(2)學(xué)校開學(xué)前夕,該商店對(duì)這兩種計(jì)算器開展了促銷活動(dòng),具體辦法如下:A品牌計(jì)算器按原價(jià)的八折銷售,B品牌計(jì)算器超出5個(gè)的部分按原價(jià)的七折銷售,設(shè)購(gòu)買x個(gè)A品牌的計(jì)算器需要y1元,購(gòu)買x(x>5)個(gè)B品牌的計(jì)算器需要y2元,分別求出y1、y2關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng)需要購(gòu)買50個(gè)計(jì)算器時(shí),買哪種品牌的計(jì)算器更合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB與⊙O相切于點(diǎn)C,OA=OB,⊙O的直徑為6 cm,AB=6 cm,則陰影部分的面積為( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,ED切⊙O于點(diǎn)C,AD交⊙O于點(diǎn)F,∠AC平分∠BAD,連接BF.
(1)求證:AD⊥ED;
(2)若CD=4,AF=2,求⊙O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com