【題目】(1)問(wèn)題發(fā)現(xiàn)
如圖1,ABC是等邊三角形,點(diǎn)D,E分別在邊BC,AC上,若∠ADE=60°,則AB,CE,BD,DC之間的數(shù)量關(guān)系是 .
(2)拓展探究
如圖2,ABC是等腰三角形,AB=AC,∠B=α,點(diǎn)D,E分別在邊BC,AC上.若∠ADE=α,則(1)中的結(jié)論是否仍然成立?請(qǐng)說(shuō)明理由.
(3)解決問(wèn)題
如圖3,在ABC中,∠B=30°,AB=AC=4cm,點(diǎn)P從點(diǎn)A出發(fā),以1cm/s的速度沿A→B方向勾速運(yùn)動(dòng),同時(shí)點(diǎn)M從點(diǎn)B出發(fā),以cm/s的速度沿B→C方向勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)運(yùn)動(dòng)至終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng),連接PM,在PM右側(cè)作∠PMG=30°,該角的另一邊交射線CA于點(diǎn)G,連接PC.設(shè)運(yùn)動(dòng)時(shí)間為t(s),當(dāng)△APG為等腰三角形時(shí),直接寫(xiě)出t的值.
【答案】(1);(2)結(jié)論成立,見(jiàn)解析;(3)1或2
【解析】
(1)問(wèn)題發(fā)現(xiàn):通過(guò)角的關(guān)系可證△ABD∽△DCE,根據(jù)相似三角形對(duì)應(yīng)邊成比例可得到線段的關(guān)系;
(2)拓展探究:可證明△ABD∽△DCE,即可得到結(jié)論;
(3)解決問(wèn)題:可證△PBM∽△MCG,然后得到,用t可表示線段的長(zhǎng),當(dāng)G點(diǎn)在線段AC上時(shí),若△APG為等腰三角形時(shí),則AP=AG,代入計(jì)算即可;當(dāng)G點(diǎn)在CA延長(zhǎng)線上時(shí),若△APG為等腰三角形時(shí),則△APG為等邊三角形,代入計(jì)算得到t.
解:(1)問(wèn)題發(fā)現(xiàn)
AB,CE,BD,DC之間的數(shù)量關(guān)系是:,
理由:∵△ABC是等邊三角形,
∴∠B=∠C=60°,
∴∠BAD+∠ADB=180°﹣60°=120°,∠ADE=60°,
∴∠CDE+∠ADB=180°﹣60°=120°,
∴∠BAD=∠CDE,
∴△ABD∽△DCE,
∴.
故答案為:.
(2)拓展探究
(1)中的結(jié)論成立,
∵AB=AC,∠B=α,
∴∠B=∠C=α,
∴∠BAD+∠ADB=180°﹣α,
∵∠ADE=α,
∴∠CDE+∠ADB=180°﹣α,
∴∠BAD=∠CDE,
∴△ABD∽△DCE,
∴;
(3)解決問(wèn)題
∵∠B=30°,AB=AC=4cm,
∴∠B=∠C=30°,
∴∠BPM+∠PMB=180°﹣30°=150°,
∵∠PMG=30°,
∴∠CMG+∠PMB=180°﹣30°=150°,
∴∠BPM=∠CMG,
又∠B=∠C=30°,
∴△PBM∽△MCG,
∴,
由題意可知AP=t,BM=t,即BP=4﹣t,
如圖1,過(guò)點(diǎn)A作AH⊥BC于H,
∵∠B=30°,AB=AC=4cm,
∴AH=2cm,BH===2cm,
∵AB=AC,AH⊥BC,
∴BC=2BH=4cm,
∴MC=(4t)cm,
∴,即CG=3t,
當(dāng)G點(diǎn)在線段AC上時(shí),若△APG為等腰三角形時(shí),則AP=AG,如圖2,
此時(shí)AG=AC﹣CG=4﹣3t,
∴4﹣3t=t,
解得:t=1,
當(dāng)G點(diǎn)在CA延長(zhǎng)線上時(shí),若△APG為等腰三角形時(shí),如圖3,
此時(shí)∠PAG=180°﹣120°=60°,則△APG為等邊三角形,AP=AG,
此時(shí)AG=CG﹣AC=3t﹣4,
∴3t﹣4=t,
解得:t=2,
∴當(dāng)△APG為等腰三角形時(shí),t的值為1或2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,以點(diǎn)為圓心,適當(dāng)?shù)拈L(zhǎng)為半徑作弧,分別交、于點(diǎn)、,再分別以點(diǎn)、為圓心,大于的長(zhǎng)為半徑作弧,兩弧交于點(diǎn),作射線,交于點(diǎn).點(diǎn)在斜邊上,以點(diǎn)為圓心,的長(zhǎng)為半徑的圓恰好經(jīng)過(guò)點(diǎn).
(1)判斷直線與的位置關(guān)系,并說(shuō)明理由;
(2)若,,求的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為Rt△ABC直角邊AC上一點(diǎn),以OC為半徑作⊙O與斜邊AB相切于點(diǎn)D,交OA于點(diǎn)E,已知,AC=3,則圖中陰影部分的面積是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小雨、小華、小星暑假到某超市參加社會(huì)實(shí)踐活動(dòng),在活動(dòng)中他們參加了某種水果的銷(xiāo)售工作,已知該水果的進(jìn)價(jià)為8元/千克.他們通過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn):當(dāng)銷(xiāo)售單價(jià)為10元時(shí),那么每天可售出300千克;銷(xiāo)售單價(jià)每上漲1元,每天的銷(xiāo)售量就減少50千克.
(1)求該超市銷(xiāo)售這種水果,每天的銷(xiāo)售量y(千克)與銷(xiāo)售單價(jià)x(元/千克)之間的函數(shù)關(guān)系式;
(2)一段時(shí)間后,發(fā)現(xiàn)這種水果每天的銷(xiāo)售量均不低于250千克,則此時(shí)該超市銷(xiāo)售這種水果每天獲取的利潤(rùn)w(元)最大是多少?
(3)為響應(yīng)政府號(hào)召,該超市決定在暑假期間每銷(xiāo)售1千克這種水果就捐贈(zèng)a元利潤(rùn)(a≤2.5)給希望工程.公司通過(guò)銷(xiāo)售記錄發(fā)現(xiàn),當(dāng)銷(xiāo)售單價(jià)不超過(guò)13元時(shí),每天扣除捐贈(zèng)后的日銷(xiāo)售利潤(rùn)隨銷(xiāo)售單價(jià)x(元/千克)的增大而增大,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABC中,∠ACB=90°,以點(diǎn)A為圓心,AC的長(zhǎng)為半徑作⊙A,交AB于點(diǎn)D,交CA的延長(zhǎng)線于點(diǎn)E.過(guò)點(diǎn)E作EF∥AB,交⊙A于點(diǎn)F,連接AF,BF,DF.
(1)求證:BF是⊙A的切線;
(2)填空:
①當(dāng)四邊形ADFE是周長(zhǎng)為20的菱形時(shí),BF= ;
②當(dāng)= 時(shí),四邊形ACBF是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線與x軸交于A(-1,0)和B(3,0)兩點(diǎn),且與y軸交于點(diǎn)C(0,3).
(1)求拋物線的解析式;
(2)拋物線的對(duì)稱(chēng)軸方程和頂點(diǎn)M坐標(biāo);
(3)求四邊形ABMC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)市衛(wèi)生防疫部門(mén)的要求,游泳池必須定期換水后才能對(duì)外開(kāi)放.在換水時(shí)需要經(jīng)“排水一清冼一灌水”的過(guò)程.某游泳館從早上開(kāi)始對(duì)游泳池進(jìn)行換水,已知該游泳池的排水速度是灌水速度的倍,其中游泳池內(nèi)剩余的水量與換水時(shí)間上之間的函數(shù)圖象如圖所示,根據(jù)圖象解答下列問(wèn)題:
(1)該游泳池清洗需要 小時(shí).
(2)求排水過(guò)程中的與之間的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍.
(3)若該游泳館在換水結(jié)束分鐘后才能對(duì)外開(kāi)放,判斷游泳愛(ài)好者小致能否在中午進(jìn)入該游泳館游泳,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,以頂點(diǎn)為圓心,適當(dāng)長(zhǎng)為半徑畫(huà)弧,分別交邊于點(diǎn);再分別以為圓心,以大于為半徑作弧,兩弧在內(nèi)交于點(diǎn);作射線交邊于點(diǎn)若,則的面積為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將一塊腰長(zhǎng)為的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,直角頂點(diǎn)C的坐標(biāo)為(1,0),點(diǎn)B在拋物線y=ax2+ax2上.
(1)點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為 ;拋物線的解析式為 ;
(2)設(shè)拋物線的頂點(diǎn)為D,求△DBC的面積;
(3)在拋物線上是否還存在點(diǎn)P(點(diǎn)B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,請(qǐng)直接寫(xiě)出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com