已知拋物線.
(1)通過(guò)配方,將拋物線的表達(dá)式寫成的形式(要求寫出配方過(guò)程);
(2)求出拋物線的對(duì)稱軸和頂點(diǎn)坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線與y軸交于點(diǎn)A,拋物線上的一點(diǎn)P在第四象限,連接AP與x軸交于點(diǎn)C,,且S△AOC=1,過(guò)點(diǎn)P作PB⊥y軸于點(diǎn)B.
(1)求BP的長(zhǎng);
(2)求拋物線與x軸的交點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
一座橋如圖,橋下水面寬度AB是20米,高CD是4米.要使高為3米的船通過(guò),則其寬度須不超過(guò)多少米.
(1)如圖1,若把橋看做是拋物線的一部分,建立如圖坐標(biāo)系.
①求拋物線的解析式;
②要使高為3米的船通過(guò),則其寬度須不超過(guò)多少米?
(2)如圖2,若把橋看做是圓的一部分.
①求圓的半徑;
②要使高為3米的船通過(guò),則其寬度須不超過(guò)多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
某公司營(yíng)銷兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)研,發(fā)現(xiàn)如下信息:
信息1:銷售種產(chǎn)品所獲利潤(rùn)(萬(wàn)元)與所售產(chǎn)品(噸)之間存在二次函數(shù)關(guān)系
.當(dāng)時(shí), ;當(dāng)時(shí),.
信息2:銷售種產(chǎn)品所獲利潤(rùn) (萬(wàn)元)與所售產(chǎn)品(噸)之間存在正比例函數(shù)關(guān)系.
根據(jù)以上信息,解答下列問(wèn)題:(1)求二次函數(shù)解析式;
(2)該公司準(zhǔn)備購(gòu)進(jìn)兩種產(chǎn)品共10噸,請(qǐng)?jiān)O(shè)計(jì)一個(gè)營(yíng)銷方案,使銷售兩種產(chǎn)品獲得的利潤(rùn)之和最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
(1)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象過(guò)A(2,0)、B(12,0),且y的最大值為50,求這個(gè)二次函數(shù)的解析式;
(2)拋物線頂點(diǎn)P(2,1),且過(guò)A(-1,10),求拋物線的解析式.[來(lái)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
今年,6月12日為端午節(jié)。在端午節(jié)前夕,三位同學(xué)到某超市調(diào)研一種進(jìn)價(jià)為2元的粽子的銷售情況。請(qǐng)根據(jù)小麗提供的信息,解答小華和小明提出的問(wèn)題。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線y=ax2+bx+3(a≠0)經(jīng)過(guò)A(3,0),B(4,1)兩點(diǎn),且與y軸交于點(diǎn)C.
(1)求拋物線y=ax2+bx+3(a≠0)的函數(shù)關(guān)系式及點(diǎn)C的坐標(biāo);
(2)如圖(1),連接AB,在題(1)中的拋物線上是否存在點(diǎn)P,使△PAB是以AB為直角邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖(2),連接AC,E為線段AC上任意一點(diǎn)(不與A、C重合)經(jīng)過(guò)A、E、O三點(diǎn)的圓交直線AB于點(diǎn)F,當(dāng)△OEF的面積取得最小值時(shí),求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在等邊△ABC中,AB=3,D、E分別是AB、AC上的點(diǎn),且DE∥BC,將△ADE沿DE翻折,與梯形BCED重疊的部分記作圖形L.
(1)求△ABC的面積;
(2)設(shè)AD=x,圖形L的面積為y,求y關(guān)于x的函數(shù)解析式;
(3)已知圖形L的頂點(diǎn)均在⊙O上,當(dāng)圖形L的面積最大時(shí),求⊙O的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,一個(gè)二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(1,0)、B(3,0)兩點(diǎn).
(1)寫出這個(gè)二次函數(shù)的對(duì)稱軸;
(2)設(shè)這個(gè)二次函數(shù)的頂點(diǎn)為D,與y軸交于點(diǎn)C,它的對(duì)稱軸與x軸交于點(diǎn)E,連接AD、DE和DB,當(dāng)△AOC與△DEB相似時(shí),求這個(gè)二次函數(shù)的表達(dá)式。
[提示:如果一個(gè)二次函數(shù)的圖象與x軸的交點(diǎn)為A,那么它的表達(dá)式可表示為:]
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com