【題目】已知:如圖,點B、C、E三點在同一條直線上,CD平分∠ACE,∠DBM=∠DAN,DM⊥BE于M,DN⊥AC于N.(1)求證:△BDM≌△ADN ;(2)若AC=2,BC=1,求CM的長.
【答案】(1)見解析;(2)0.5
【解析】試題分析:(1)根據(jù)HL易證Rt△DCN≌Rt△DCM,可得CN=CM,進而可以證明Rt△ADN≌Rt△BDM;
(2)由Rt△ADN≌Rt△BDM,可得AN=BM,變形得出答案即可.
試題解析:解:(1)∵CD平分∠ACE,DM⊥BE,DN⊥AC,∴DN=DM.
在Rt△DCN和Rt△DCM中,∵CD=CD,DN=DM,∴Rt△DCN≌Rt△DCM(HL),∴CN=CM,
在Rt△ADN和Rt△BDM中,∵∠DBM=∠DAN,∠AND=∠BMD,ND=DM,∴Rt△ADN≌Rt△BDM(AAS);
(2)∵Rt△ADN≌Rt△BDM,∴AN=BM.∵AN=AC-CN, BM=BC+CM,∴AC-CN=BC+CM,
∴AC-CM=BC+CM,∴2CM=AC-BC.∵AC=2,BC=1,∴CM=0.5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm.點D在AC上,AD=1cm,點P從點A出發(fā),沿AB勻速運動;點Q從點C出發(fā),沿C→B→A→C的路徑勻速運動.兩點同時出發(fā),在B點處首次相遇后,點P的運動速度每秒提高了2cm,并沿B→C→A的路徑勻速運動;點Q保持速度不變,并繼續(xù)沿原路徑勻速運動,兩點在D點處再次相遇后停止運動,設(shè)點P原來的速度為xcm/s.
(1)點Q的速度為 cm/s(用含x的代數(shù)式表示).
(2)求點P原來的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,假分?jǐn)?shù)可以化為帶分?jǐn)?shù).例如: =2+=2在分式中,對于只含有一個字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為“假分式”;當(dāng)分子的次數(shù)小于分母的次數(shù)時,我們稱之為“真分式”.例如: 這樣的分式就是假分式; 這樣的分式就是真分式 .類似的,假分式也可以化為帶分式(即:整式與真分式和的形式).
例如: ==1-===
(1)將分式化為帶分式;
(2)若分式的值為整數(shù),求x的整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AB,CD相交于點O,AD,CB的延長線交于點E,OA=OC,EA=EC.
(1)試說明:∠A=∠C;
(2)在(1)的解答過程中,需要作輔助線,它的意圖是什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,且∠1=20°,∠2=45°+α,∠3=60°-α,∠4=40°-α,∠5=30°.則α的值為( )
A. 10° B. 15° C. 20° D. 25°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小英同時擲甲、乙兩枚質(zhì)地均勻的正方體骰子.記甲骰子朝上一面的數(shù)字為x,乙骰子朝上一面的數(shù)字為y,這樣就確定點P的一個坐標(biāo)(x,y),那么點P落在雙曲線y=上的概率為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題是真命題的有( )
①過直線外一點,有且只有一條直線平行于已知直線;②同位角相等,兩直線平 行;③內(nèi)錯角相等;④平面內(nèi)垂直于同一直線的兩直線平行.
A.1 個B.2 個C.3 個D.4 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知□ABCD中,DE是∠ADC的角平分線,交BC于點E.
(1)求證:CD=CE;
(2)若BE=CE,求證:AE⊥DE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com