【題目】如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為A(0,2),B(2,0),直線AB與反比例函數(shù)y=的圖象相交于點(diǎn)C和點(diǎn)D,將△OBC繞點(diǎn)O逆時(shí)針方向旋轉(zhuǎn)θ角(θ為銳角),得到△OB′C′,當(dāng)θ=_____時(shí),OC′⊥AB;

【答案】60°

【解析】

設(shè)直線AB解析式為ykx+b,將AB坐標(biāo)代入求出kb的值,確定出直線AB解析式,聯(lián)立直線AB與反比例解析式,求出交點(diǎn)C坐標(biāo),過CCM垂直于x軸,在直角三角形COM值,利用銳角三角函數(shù)定義及特殊角的三角函數(shù)值求出∠COM的度數(shù),在直角三角形AOB中,同理求出∠ABO的度數(shù),由外角性質(zhì)即可求出∠ACO的度數(shù);根據(jù)題意畫出圖形,求出OC′⊥AB時(shí)的旋轉(zhuǎn)角即可確定出θ度數(shù).

解:設(shè)直線AB的解析式為y=kx+b,

將A(0,2),B(2,0)代入解析式y(tǒng)=kx+b中,得

,

解得:

∴直線AB的解析式為y=﹣x+2

解方程組 ,

得: ,

∴點(diǎn)C坐標(biāo)為(3,﹣),

如圖,過點(diǎn)C作CM⊥x軸于點(diǎn)M,則在Rt△OMC中,CM=,OM=3,

∴tan∠COM=

∴∠COM=30°,

在Rt△AOB中,tan∠ABO=,

∴∠ABO=60°,

∴∠ACO=∠ABO﹣∠COM=30°,

若OC′⊥AB,則有∠BNO=90°,

∵∠NBO=60°,

∴∠BON=30°,

∵∠COM=30°,

∴∠COC′=∠COM+∠BON=60°,即旋轉(zhuǎn)角θ為60°,

故答案為:60°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=2,點(diǎn)E在邊AD上,ABE=45°,BE=DE,連接BD,點(diǎn)P在線段DE上,過點(diǎn)P作PQBD交BE于點(diǎn)Q,連接QD.設(shè)PD=x,PQD的面積為y,則能表示y與x函數(shù)關(guān)系的圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們不妨約定:對角線互相垂直的凸四邊形叫做十字形”.

(1)在平行四邊形、矩形、菱形、正方形中,一定是十字形的有   

(2)如圖1,在四邊形ABCD中,ABAD,且CBCD

①證明:四邊形ABCD十字形”;

②若AB=2.BAD=60°,BCD=90°,求四邊形ABCD的面積.

(3)如圖2.A、BC、D是半徑為1的⊙O上按逆時(shí)針方向排列的四個(gè)動點(diǎn),ACBD交于點(diǎn)E,若∠ADBCDBABDCBD.滿足AC+BD=3,求線段OE的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓O通過五邊形OABCD的四個(gè)頂點(diǎn).若弧ABD=150°,∠A=65°,∠D=60°,則弧BC的度數(shù)為何?(  )

A. 25 B. 40 C. 50 D. 55

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】劉帥參加“我學(xué)十九大”知識競賽,再答對最后兩道單選題就能問鼎冠軍.第一道單選題有3個(gè)選項(xiàng),第二道單選題有4個(gè)選項(xiàng),這兩道題劉帥都不會,不過劉帥還有一個(gè)“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個(gè)錯誤選項(xiàng)).

(1)如果劉帥第一題不使用“求助”,那么劉帥答對第一道題的概率是   

(2)從概率的角度分析,你建議劉帥在第幾題使用“求助”,說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=﹣x2﹣(m+3)x+m2﹣12與x軸交于A(x1,0)、B(x2,0)兩點(diǎn),且x1<0,x2>0,拋物線與y軸交于點(diǎn)C,OB=2OA.

(1)求拋物線解析式;

(2)已知直線y=x+2與拋物線相交于M、N兩點(diǎn),分別過M、N作x軸的垂線,垂足為M1、N1,是否存在點(diǎn)P,同時(shí)滿足如下兩個(gè)條件:

①P為拋物線上的點(diǎn),且在直線MN上方;

:=6:35

若存在,則求點(diǎn)P橫坐標(biāo)t,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩市相距150千米,分別從A、B處測得國家級風(fēng)景區(qū)中心C處的方位角如圖所示,風(fēng)景區(qū)區(qū)域是以C為圓心,45千米為半徑的圓,tanα=1.627,tanβ=1.373.為了開發(fā)旅游,有關(guān)部門設(shè)計(jì)修建連接AB兩市的高速公路.問連接AB高速公路是否穿過風(fēng)景區(qū),請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在航線l的兩側(cè)分別有觀測點(diǎn)A和B,點(diǎn)B到航線l的距離BD為4km,點(diǎn)A位于點(diǎn)B北偏西60°方向且與B相距20km處.現(xiàn)有一艘輪船從位于點(diǎn)A南偏東74°方向的C處,沿該航線自東向西航行至觀測點(diǎn)A的正南方向E處.求這艘輪船的航行路程CE的長度.(結(jié)果精確到0.1km)(參考數(shù)據(jù):≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在學(xué)習(xí)了《展開與折疊》這一課后,明白了很多幾何體都能展開成平面圖形.于是他在家用剪刀展開了一個(gè)長方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據(jù)你所學(xué)的知識,回答下列問題:

(1)小明總共剪開了_______條棱.

(2)現(xiàn)在小明想將剪斷的②重新粘貼到①上去,而且經(jīng)過折疊以后,仍然可以還原成一個(gè)長方體紙盒,你認(rèn)為他應(yīng)該將剪斷的紙條粘貼到①中的什么位置?請你幫助小明在①上補(bǔ)全.

(3)小明說:他所剪的所有棱中,最長的一條棱是最短的一條棱的5倍.現(xiàn)在已知這個(gè)長方體紙盒的底面是一個(gè)正方形,并且這個(gè)長方體紙盒所有棱長的和是880cm,求這個(gè)長方體紙盒的體積.

查看答案和解析>>

同步練習(xí)冊答案