【題目】如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點D,連接CD并延長交AB的延長線于點F.
(1)求證:CF是⊙O的切線;
(2)若∠F=30°,EB=6,求圖中陰影部分的面積(結(jié)果保留根號和π)
【答案】(1)證明見解析;(2)9﹣3π
【解析】試題分析:(1)、連接OD,根據(jù)平行四邊形的性質(zhì)得出∠AOC=∠OBE,∠COD=∠ODB,結(jié)合OB=OD得出∠DOC=∠AOC,從而證明出△COD和△COA全等,從而的得出答案;(2)、首先根據(jù)題意得出△OBD為等邊三角形,根據(jù)等邊三角形的性質(zhì)得出EC=ED=BO=DB,根據(jù)Rt△AOC的勾股定理得出AC的長度,然后根據(jù)陰影部分的面積等于兩個△AOC的面積減去扇形OAD的面積得出答案.
試題解析:(1)如圖連接OD.
∵四邊形OBEC是平行四邊形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,
∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,
在△COD和△COA中,,∴△COD≌△COA,∴∠CDO=∠CAO=90°,
∴CF⊥OD, ∴CF是⊙O的切線.
(2)∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,
∵OD=OB,∴△OBD是等邊三角形,∴∠4=60°,∵∠4=∠F+∠1,∴∠1=∠2=30°,
∵EC∥OB,∴∠E=180°﹣∠4=120°,∴∠3=180°﹣∠E﹣∠2=30°,∴EC=ED=BO=DB,
∵EB=6,∴OB=OD═OA=3, 在Rt△AOC中,∵∠OAC=90°,OA=3,∠AOC=60°,
∴AC=OAtan60°=3, ∴S陰=2S△AOC﹣S扇形OAD=2××3×3﹣=9﹣3π.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k為常數(shù).
(1)求證:無論k為何值,方程總有兩個不相等實數(shù)根;
(2)若原方程的一根大于3,另一根小于3,求k的最大整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作⊙O,分別交AC、BC于點D、E,點F在AC的延長線上,且∠A=2∠CBF.
(1)求證:BF與⊙O相切.
(2)若BC=CF=4,求BF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,學(xué)校準備修建一個含內(nèi)接矩形的菱形花壇(花壇為軸對稱圖形).矩形的四個頂點分別在菱形四條邊上,菱形的高AM=3米,∠ABC=60°.設(shè)AE=x米(1≤x≤2),矩形EFGH的面積為S米2.
(1)求S與x的函數(shù)關(guān)系式;
(2)學(xué)校準備在矩形內(nèi)種植紅色花草,在四個三角形內(nèi)種植綠色花草.已知:紅色和綠色植物的價格為200元/米2,100元/米2,當x為何值時,購買花卉所需的總費用最低,并求出最低總費用(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一茶葉專賣店經(jīng)銷某種品牌的茶葉,該茶葉的成本價是80元/kg,銷售單價不低于120元/kg.且不高于180元/kg,經(jīng)銷一段時間后得到如下數(shù)據(jù):
銷售單價x(元/kg) | 120 | 130 | … | 180 |
每天銷量y(kg) | 100 | 95 | … | 70 |
設(shè)y與x的關(guān)系是我們所學(xué)過的某一種函數(shù)關(guān)系.
(1)直接寫出y與x的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(2)當銷售單價為多少時,銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某活動小組為了估計裝有個白球和若干個紅球(每個球除顏色外都相同)的袋中紅球接近多少個,在不將袋中球倒出來的情況下,分小組進行摸球試驗,兩人一組,共組進行摸球?qū)嶒灒渲幸晃粚W(xué)生摸球,另一位學(xué)生記錄所摸球的顏色,并將球放回袋中搖勻,每一組做次試驗,匯總起來后,摸到紅球次數(shù)為次.
估計從袋中任意摸出一個球,恰好是紅球的概率是多少?
請你估計袋中紅球接近多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖拋物線y=ax2+bx,過點A(4,0)和點B(6,2),四邊形OCBA是平行四邊形,點M(t,0)為x軸正半軸上的點,點N為射線AB上的點,且AN=OM,點D為拋物線的頂點.
(1)求拋物線的解析式,并直接寫出點D的坐標;
(2)當△AMN的周長最小時,求t的值;
(3)如圖②,過點M作ME⊥x軸,交拋物線y=ax2+bx于點E,連接EM,AE,當△AME與△DOC相似時.請直接寫出所有符合條件的點M坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】創(chuàng)意產(chǎn)品蘊含著很多商機,我市某文化創(chuàng)意公司,銷售A,B兩種創(chuàng)意產(chǎn)品,其中A產(chǎn)品的定價是每件20元,B產(chǎn)品的定價是每件30元.
(1)該公司按定價售出A,B兩種產(chǎn)品共600件,若銷售總額不低于15000元,則至少銷售B產(chǎn)品多少件?
(2)2017年8月,該公司按定價售出A產(chǎn)品300件,B產(chǎn)品400件.2017年9月,公司根據(jù)市場情況,適當調(diào)整A,B產(chǎn)品的售價,A產(chǎn)品的售價比定價增加了a%,銷量與8月保持不變;B產(chǎn)品的售價比定價減少了a%,銷量比8月份增加了a%,結(jié)果9月份A,B產(chǎn)品的銷售總額比8月份增加了a%,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】來自某綜合市場財務(wù)部的報告表明,商場2014年1﹣4月份的投資總額一共是2065萬元,商場2014年第一季度每月利潤統(tǒng)計圖和2014年1﹣4月份利潤率統(tǒng)計圖如下(利潤率=利潤÷投資金額).則商場2014年4月份利潤是__萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com