精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在O 的內接ABC ,∠ABC=30°,AC 的延長線與過點 B O 的切線相交于點 D,若O 的半徑 OC=1,BDOC,則 CD 的長為(

A. 1+ B. C. D.

【答案】B

【解析】

作輔助線OB、CE構建正方形CEBO.根據圓周角定理(同弧所對的圓周角是所對的圓心角的一半)求得∠OAC=2ABC=60°,然后由切線的性質及平行線的性質求得OBOC,OBBD;再根據圓的半徑都相等知OB=OC,所以判定四邊形CEBO是正方形,然后在直角三角形CDE中利用正弦三角函數sinD=sin60°CD的長度并作出選擇.

連接OB,過點CCEBD于點E,

∵∠ABC=30°,

∴∠AOC=60°(同弧所對的圓周角是所對的圓心角的一半);

OA=OC(O的半徑),

∴∠ACO=OAC=60°(等邊對等角),

BDOC,

∴∠ACO=D=60°(兩直線平行,同位角相等),

∴∠OCD=120°(兩直線平行,同旁內角互補),

BD是⊙O的切線,

OBOC,OBBD,

又∵OB=OC,

∴四邊形CEBO是正方形,

CE=OB=1,

CD==,

故選:B.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,過銳角ABC的頂點A作DEBC,AB恰好平分DAC,AF平分EAC交BC的延長線于點F.在AF上取點M,使得AM=AF,連接CM并延長交直線DE于點H.若AC=2,AMH的面積是,則的值是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知函數y=(n+1)xm+mx+1﹣n(m,n為實數)

(1)當m,n取何值時,此函數是我們學過的哪一類函數?它一定與x軸有交點嗎?請判斷并說明理由;

(2)若它是一個二次函數,假設n>﹣1,那么:

①當x<0時,y隨x的增大而減小,請判斷這個命題的真假并說明理由;

②它一定經過哪個點?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】Rt△ABC中,∠ABC=90°,ABBC,E、M分別為AB、AC上的點,連接CE,BM交于點G,且BMCE,OAC的中點,連接BOCE于點N

(1)如圖,若AB=6,2MOAM,求BM的長;

(2)如圖,連接OG、AG,若AGOG,求證:ACBG

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】4件同型號的產品中,有1件不合格品和3件合格品

(1)從這4件產品中隨機抽取1件進行檢測,不放回,再隨機抽取1件進行檢測請用列表法或畫樹狀圖的方法,求兩次抽到的都是合格品的概率.(解答時可用A表示1件不合格品,B、CD分別表示3件合格品

(2)在這4件產品中加入若干件合格品后,進行如下試驗:隨機抽取1件進行檢側,然后放回,多次重復這個試驗,通過大量重復試驗后發(fā)現,抽到合格品的頻率穩(wěn)定在0.95,則可以推算出大約加入多少件合格品?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系 xOy 中,已知正比例函數 y1=﹣2x 的圖象與反比例函數 y2的圖象交于 A(﹣1,a),B 兩點.

(1)求出反比例函數的解析式及點 B 的坐標;

(2)觀察圖象,請直接寫出滿足 y≤2 的取值范圍;

(3) P 是第四象限內反比例函數的圖象上一點,若POB 的面積為 1,請直接寫出點 P的橫坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,RtABC的三個頂點分別是A(-4,2)、B(0,4)、C(0,2),

(1)畫出ABC關于點C成中心對稱的A1B1C;平移ABC,若點A的對應點A2的坐標為(0,-4),畫出平移后對應的A2B2C2

(2)A1B1C和A2B2C2關于某一點成中心對稱,則對稱中心的坐標為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD內接于⊙O,AB是⊙O的直徑,點P在CA的延長線上,∠CAD=45°.

(1)若AB=4,求弧CD的長.

(2)若弧BC=弧AD,AD=AP. 求證:PD是⊙O的切線.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某超市在端午節(jié)期間開展優(yōu)惠活動,凡購物者可以通過轉動轉盤的方式享受折扣優(yōu)惠,本次活動共有兩種方式,方式一:轉動轉盤甲,指針指向A區(qū)域時,所購買物品享受9折優(yōu)惠、指針指向其它區(qū)域無優(yōu)惠;方式二:同時轉動轉盤甲和轉盤乙,若兩個轉盤的指針指向每個區(qū)域的字母相同,所購買物品享受8折優(yōu)惠,其它情況無優(yōu)惠.在每個轉盤中,指針指向每個區(qū)城的可能性相同(若指針指向分界線,則重新轉動轉盤)

(1)若顧客選擇方式一,則享受9折優(yōu)惠的概率為多少;

(2)若顧客選擇方式二,請用樹狀圖或列表法列出所有可能,并求顧客享受8折優(yōu)惠的概率.

查看答案和解析>>

同步練習冊答案