精英家教網(wǎng)如圖,A、B是雙曲線上的任意兩點,AM⊥y軸,BN⊥x軸,M、N是垂足.設△AOM、△BON的面積分別是S1、S2,則其大小關系為( 。
A、S1>S2B、S1=S2C、S1<S2D、不能確定
分析:由于A、B在反比例函數(shù)圖象上且關于原點對稱,根據(jù)反比例函數(shù)y=
k
x
中k的幾何意義,S△AOM=S△BON,即可證明該結論.
解答:解:∵A,B是函數(shù)y=
k
x
(k≠0)的圖象上關于原點對稱的任意兩點,
∴若假設A點坐標為(x,y),
則B點坐標為(-x,-y).
∴S△AOM=
1
2
xy,S△BON=
1
2
xy,
所以S△AOM=S△BON
故選B.
點評:本題主要考查反比例函數(shù)中比例系數(shù)k的幾何意義和函數(shù)圖象的對稱性,難易程度適中,是中考較常見的考查點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,A、B是雙曲線y=
k
x
(k>0)
上的點,A、B兩點的橫坐標分別是a、2a,線段AB的延長線交x軸于點C,若S△AOC=6.則k的值為(  )
A、1B、2C、4D、無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,C,D是雙曲線y=
m
x
在第1象限內(nèi)的分支上的兩點,直線CD分別交x軸、y軸于A、B兩點,設C、D坐標(x1,y1),(x2,y2),連接OC、OD,求證:y1<OC<y1+
m
y1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,A、B是雙曲線 y=
k
x
(k>0)上的點,A、B兩點的橫坐標分別是a、2a,線段AB的延長線交x軸于點C,若S△AOC=9.則k的值為( 。
A、2B、3C、6D、9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•沙縣質檢)如圖,A、B兩點是雙曲線的一個分支上的兩點,點B在點A右側,并且B的坐標為(a,b),則a的取值范圍是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,已知C、D是雙曲線y=
m
x
在第一象限內(nèi)的分支上兩點,直線CD分別交x軸、y軸于A、B,CG⊥x軸于G,DH⊥x軸于H,
OG
GC
=
DH
OH
=
1
4
,OC=
17

(1)求m的值和D點的坐標;
(2)在雙曲線第一象限內(nèi)的分支上是否有一點P,使得S△POC=S△POD?若存在,求出P點坐標;若不存在,請說明理由.
(3)如圖2,點K是雙曲線y=
m
x
在第三象限內(nèi)的分支上的一動點,過點K作KM⊥y軸于M,OE平分∠KOA,KE⊥OE,KE交y軸于N,直線ME交x軸于F,①
OF2+MN2
ON2
,②
OF+MN
ON
,有一個為定值,請你選擇正確結論并求出這個定值.

查看答案和解析>>

同步練習冊答案