【題目】下列不等式變形,成立的是( )
A.若m<n,則m-2<n-2B.若m<n,則2-m<2-n
C.若m<n,則-2m<-2nD.若m<n,則
【答案】A
【解析】
不等式兩邊同時加上或減去同一個數(shù),不等號方向不改變;不等式兩邊同時乘以或除以同一個正數(shù),不等號方向不改變;不等式兩邊同時乘以或除以同一個負數(shù),不等號方向改變,根據(jù)此性質(zhì)進行判斷.
A、若m<n,兩邊同時減去2,不等號方向不改變,∴m-2<n-2,故本選項正確;
B、若m<n,兩邊同時乘以-1,不等號方向改變,∴-m>-n,兩邊再同時加上2,不等號方向不改變,∴2-m>2-n,故本選項錯誤;
C、若m<n,兩邊同時乘以-2,不等號方向改變,∴-2m>-2n,故本選項錯誤;
D、若m<n,兩邊同時除以-2,不等號方向改變,∴,故本選項錯誤.
故選:A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以直線AB上一點O為端點作射線OC,使∠AOC=65°,將一個直角三角形的直角頂點放在點O處.(注:∠DOE=90°)
(1)如圖①,若直角三角板DOE的一邊OD放在射線OA上,則∠COE °.
(2)如圖②,將直角三角板DOE繞點O順時針方向轉(zhuǎn)動到某個位置,若OC恰好平分∠AOE,則∠COD= °.
(3)如圖③,將直角三角板DOE繞點O順時針方向轉(zhuǎn)動到某個位置,0°<∠AOD<180°,如果∠COD=∠AOE,求∠COD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 已知,如圖,點D是△ABC的邊AB的中點,四邊形BCED是平行四邊形.
(1)求證:四邊形ADCE是平行四邊形;
(2)在△ABC中,若AC=BC,則四邊形ADCE是 ;(只寫結(jié)論,不需證明)
(3)在(2)的條件下,當AC⊥BC時,求證:四邊形ADCE是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙、丙三個教師承擔本學期期末考試的第17題的網(wǎng)上閱卷任務(wù),若由這三人中的某一人獨立完成閱卷任務(wù),則甲需要15小時,乙需要10小時,丙需要8小時。
(1)如果甲、乙、丙三人同時改卷,那么需要多少時間完成?
(2)如果按照甲、乙、丙、甲、乙、丙、……的次序輪流閱卷,每一輪中每人各閱卷1小時。那么要多少小時完成?
(3)能否把(2)題所說的甲、乙、丙的次序作適當調(diào)整,其余的不變,使得完成這項任務(wù)的時間至少提前半小時?(答題要求:如認為不能,需要說明理由;如認為能,請至少說出一種輪流的次序,并求出相應(yīng)能提前多少時間完成閱卷任務(wù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D,E是△ABC中AB,BC邊上的點,且DE∥AC,∠ACB角平分線和它的外角的平分線分別交DE于點G和H.則下列結(jié)論錯誤的是( )
A. 若BG∥CH,則四邊形BHCG為矩形
B. 若BE=CE時,四邊形BHCG為矩形
C. 若HE=CE,則四邊形BHCG為平行四邊形
D. 若CH=3,CG=4,則CE=2.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】)圖①中是一座鋼管混凝土系桿拱橋,橋的拱肋ACB可視為拋物線的一部分(如圖②),橋面(視為水平的)與拱肋用垂直于橋面的系桿連接,測得拱肋
的跨度AB為200米,與AB中點O相距20米處有一高度為48米的系桿.
【1】求正中間系桿OC的長度;
【2】若相鄰系桿之間的間距均為5米(不考慮系桿的粗細),則是否存在一根系桿的長度恰好是OC長度的一半?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2017貴州省遵義市)如圖,拋物線(a<0,a、b為常數(shù))與x軸交于A、C兩點,與y軸交于B點,直線AB的函數(shù)關(guān)系式為.
(1)求該拋物線的函數(shù)關(guān)系式與C點坐標;
(2)已知點M(m,0)是線段OA上的一個動點,過點M作x軸的垂線l分別與直線AB和拋物線交于D、E兩點,當m為何值時,△BDE恰好是以DE為底邊的等腰三角形?
(3)在(2)問條件下,當△BDE恰好是以DE為底邊的等腰三角形時,動點M相應(yīng)位置記為點M′,將OM′繞原點O順時針旋轉(zhuǎn)得到ON(旋轉(zhuǎn)角在0°到90°之間);
①探究:線段OB上是否存在定點P(P不與O、B重合),無論ON如何旋轉(zhuǎn),始終保持不變,若存在,試求出P點坐標;若不存在,請說明理由;
②試求出此旋轉(zhuǎn)過程中,(NA+NB)的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知開口向上的拋物線y=ax2+bx+c,它與x軸的兩個交點分別為(-1,0),(3,0).對于下列命題:①b-2a=0;②abc>0;③a-2b+4c<0;④8a+c>0.其中正確的有
A. 3個 B. 2個 C. 1個 D. 0個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com