【題目】已知二次函數(shù)解析式為ymx22mx+m,二次函數(shù)與x軸交于AB兩點(BA右側(cè)),與y軸交于C點,二次函數(shù)頂點為M.已知OMB90°

求頂點坐標(biāo).

求二次函數(shù)解析式.

③N為線段BM中點,在二次函數(shù)的對稱軸上是否存在一點P,使得∠PON60°,若存在求出點P坐標(biāo),若不存在,請說明理由.

【答案】頂點M(1,)②y;存在,當(dāng)點P(1,)(1,3)時,使得PON60°

【解析】

先求出對稱軸為x1,代入解析式可求頂點坐標(biāo);

通過證明MEO∽△BEM,可得,可求BE3,可得點B坐標(biāo),代入可求解析式;

分兩種情況討論,由相似三角形的性質(zhì)和兩點距離公式可求解.

①∵x=﹣1,

ym2m+m=﹣,

頂點M(1,)

如圖1,過點MMEOBE,

頂點M(1,)

EM,OE1

∵∠OMB90°

∴∠OME+∠BME90°,

MEOB,

∴∠OME+∠MOE90°

∴∠MOEEMB,且MEOMEB90°,

∴△MEO∽△BEM

,

BE3,

OBOE+BE4,

B(4,0)

∴016m8m+m,

m,

二次函數(shù)解析式為:y;

如圖2,若點Px軸上方,

頂點M(1,)

EMOE1,

∴tan∠EOMOM2,

∴∠EOM60°,

又∵OMB90°

MB=OMtan∠EOM2

N為線段BM中點,

MN

∵∠PONMOB60°,

∴∠POEOMN,且PEOOMN90°,

∴△OMN∽△OEP,

,

PE

P(1,);

如圖3,若點Px軸下方,在OP上截取OFON,連接NF

OM2,MN,

ON

ONOFPON60°,

∴△ONF是等邊三角形,

OFONFN

N為線段BM中點,點B(4,0),點M(1,)

N(,)

設(shè)點F(a,b)

解得

F(,)

直線OF的解析式為:y=﹣3x,

當(dāng)x1時,y=﹣3,

P(1,3)

綜上所述:當(dāng)點P(1,)(1,3)時,使得PON60°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC10,點D是邊BC上一動點(不與BC重合),∠ADE=∠Bα,DEAC于點E,且cosα,下列結(jié)論:①ADE∽△ACD;②當(dāng)BD6時,ABDDCE全等;③DCE為直角三角形時,BD8;④0CE≤6.4.其中正確的結(jié)論是_________.(把你認(rèn)為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,DBC的中點,點GAD上(點G不與A重合),過點G的直線交ABE,交射線AC于點F,設(shè)AE=xABAF=yACx,y≠0).

1)如圖1,若△ABC為等邊三角形,點GD重合,∠BDE=30,求證:△AEF∽△DEA;

2)如圖2,若點GD重合,求證:x+y=2xy;

3)如圖3,若AG=nGD,x=,y=,直接寫出n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某個體地攤經(jīng)銷一批小商品,每件商品的成本為8元.據(jù)市場分析,銷售單價定為10元時,每天能售出200件;現(xiàn)采用提高商品售價,減少銷售量的辦法增加利潤,若銷售單價每漲1元,每天的銷售量就減少20件,設(shè)銷售單價為每件x元,銷售量為y件.

1)寫出yx函數(shù)關(guān)系式.

2)若想每天的銷售利潤恰為640元,同時又要使顧客得到實惠,這種小商品每件售價應(yīng)定為多少元?

3)這種小商品每件售價應(yīng)定為多少元時,每天的銷售利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為阻斷新冠疫情向校園蔓延,確保師生生命安全和身體健康,教育部通知,2020年春季學(xué)期延期開學(xué),利用網(wǎng)上平臺,停課不停學(xué),某校對初三全體學(xué)生數(shù)學(xué)線上學(xué)習(xí)情況進(jìn)行調(diào)查,隨機(jī)抽取部分學(xué)生的4月月診斷性測試成績,按由高到低分為AB,CD四個等級,根據(jù)調(diào)查的數(shù)據(jù)繪制成如下的條形統(tǒng)計圖和扇形統(tǒng)計圖,請根據(jù)圖中的信息,解答下列問題:

(1)該校共抽查了   名同學(xué)的數(shù)學(xué)測試成績,扇形統(tǒng)計圖中A等級所占的百分比a   

(2)補(bǔ)全條形統(tǒng)計圖;

(3)若該校初三共有1180名同學(xué),請估計該校初三學(xué)生數(shù)學(xué)測試成績優(yōu)秀(測試成績B級以上為優(yōu)秀,含B級)約有   名;

(4)該校老師想從兩男、兩女四位學(xué)生中隨機(jī)選擇兩位了解平時線上學(xué)習(xí)情況,請用列表或畫樹形圖的方法求出恰好選中一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),已知點G在正方形ABCD的對角線AC上,GEBC,垂足為點E,GFCD,垂足為點F.

(1)證明與推斷:

①求證:四邊形CEGF是正方形;

②推斷:的值為   

(2)探究與證明:

將正方形CEGF繞點C順時針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AGBE之間的數(shù)量關(guān)系,并說明理由:

(3)拓展與運(yùn)用:

正方形CEGF在旋轉(zhuǎn)過程中,當(dāng)B,E,F(xiàn)三點在一條直線上時,如圖(3)所示,延長CGAD于點H.若AG=6,GH=2,則BC=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面上有且只有4個點,這4個點中有一個獨特的性質(zhì):連結(jié)每兩點可得到6條線段,這6條線段有且只有兩種長度.我們把這四個點稱作準(zhǔn)等距點.例如正方形ABCD的四個頂點(如圖1),有AB=BC=CD=DA,AC=BD.其實滿足這樣性質(zhì)的圖形有很多,如圖2A、B、C、O四個點,滿足AB=BC=CAOA=OB=OC;如圖3A、B、CO四個點,滿足OA=OB=OC=BC,AB=AC

1)如圖,若等腰梯形ABCD的四個頂點是準(zhǔn)等距點,且AD∥BC

寫出相等的線段(不再添加字母);

∠BCD的度數(shù).

2)請再畫出一個四邊形,使它的四個頂點為準(zhǔn)等距點,并寫出相等的線段.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AECD于點EAD平分∠BDE

1)求證:AE是⊙O的切線;

2)如果AB6AE3,求:陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y2x3經(jīng)過點A(﹣2,a),與x軸相交于B、C兩點(B點在C點左側(cè)).

1)求a的值及B、C兩點坐標(biāo);

2)點D在拋物線的對稱軸上,且位于x軸的上方,將△BCD沿直線BD翻折得到△BD,若點恰好落在拋物線的對稱軸上,求點和點D的坐標(biāo);

3)設(shè)Pm,-3)是該拋物線上一點,點Q為拋物線的頂點,在x軸、y軸分別找點M、N,使四邊形MNQP的周長最小,請求出點M、N的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案