【題目】已知二次函數(shù)解析式為y=mx2﹣2mx+m﹣,二次函數(shù)與x軸交于A、B兩點(B在A右側(cè)),與y軸交于C點,二次函數(shù)頂點為M.已知∠OMB=90°.
①求頂點坐標(biāo).
②求二次函數(shù)解析式.
③N為線段BM中點,在二次函數(shù)的對稱軸上是否存在一點P,使得∠PON=60°,若存在求出點P坐標(biāo),若不存在,請說明理由.
【答案】①頂點M(1,﹣);②y;③存在,當(dāng)點P(1,)或(1,﹣3)時,使得∠PON=60°.
【解析】
①先求出對稱軸為x=1,代入解析式可求頂點坐標(biāo);
②通過證明△MEO∽△BEM,可得,可求BE=3,可得點B坐標(biāo),代入可求解析式;
③分兩種情況討論,由相似三角形的性質(zhì)和兩點距離公式可求解.
①∵x=﹣=1,
∴y=m﹣2m+m﹣=﹣,
∴頂點M(1,﹣);
②如圖1,過點M作ME⊥OB于E,
∵頂點M(1,﹣)
∴EM=,OE=1,
∵∠OMB=90°.
∴∠OME+∠BME=90°,
∵ME⊥OB,
∴∠OME+∠MOE=90°,
∴∠MOE=∠EMB,且∠MEO=∠MEB=90°,
∴△MEO∽△BEM,
∴,
∴BE=3,
∴OB=OE+BE=4,
∴點B(4,0),
∴0=16m﹣8m+m﹣,
∴m=,
∴二次函數(shù)解析式為:y;
③如圖2,若點P在x軸上方,
∵頂點M(1,﹣)
∴EM=,OE=1,
∴tan∠EOM==,OM===2,
∴∠EOM=60°,
又∵∠OMB=90°
∴MB=OMtan∠EOM=2,
∵N為線段BM中點,
∴MN=,
∵∠PON=∠MOB=60°,
∴∠POE=∠OMN,且∠PEO=∠OMN=90°,
∴△OMN∽△OEP,
∴,
∴PE=,
∴點P(1,);
如圖3,若點P在x軸下方,在OP上截取OF=ON,連接NF,
∵OM=2,MN=,
∴ON=
∵ON=OF,∠PON=60°,
∴△ONF是等邊三角形,
∴OF=ON=FN=,
∵N為線段BM中點,點B(4,0),點M(1,﹣)
∴點N(,﹣)
設(shè)點F(a,b)
解得
∴點F(,)
∴直線OF的解析式為:y=﹣3x,
∴當(dāng)x=1時,y=﹣3,
∴點P(1,﹣3)
綜上所述:當(dāng)點P(1,)或(1,﹣3)時,使得∠PON=60°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,點D是邊BC上一動點(不與B、C重合),∠ADE=∠B=α,DE交AC于點E,且cos∠α=,下列結(jié)論:①△ADE∽△ACD;②當(dāng)BD=6時,△ABD與△DCE全等;③△DCE為直角三角形時,BD為8或;④0<CE≤6.4.其中正確的結(jié)論是_________.(把你認(rèn)為正確結(jié)論的序號都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,D是BC的中點,點G在AD上(點G不與A重合),過點G的直線交AB于E,交射線AC于點F,設(shè)AE=xAB,AF=yAC(x,y≠0).
(1)如圖1,若△ABC為等邊三角形,點G與D重合,∠BDE=30,求證:△AEF∽△DEA;
(2)如圖2,若點G與D重合,求證:x+y=2xy;
(3)如圖3,若AG=nGD,x=,y=,直接寫出n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某個體地攤經(jīng)銷一批小商品,每件商品的成本為8元.據(jù)市場分析,銷售單價定為10元時,每天能售出200件;現(xiàn)采用提高商品售價,減少銷售量的辦法增加利潤,若銷售單價每漲1元,每天的銷售量就減少20件,設(shè)銷售單價為每件x元,銷售量為y件.
(1)寫出y與x函數(shù)關(guān)系式.
(2)若想每天的銷售利潤恰為640元,同時又要使顧客得到實惠,這種小商品每件售價應(yīng)定為多少元?
(3)這種小商品每件售價應(yīng)定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為阻斷新冠疫情向校園蔓延,確保師生生命安全和身體健康,教育部通知,2020年春季學(xué)期延期開學(xué),利用網(wǎng)上平臺,停課不停學(xué)”,某校對初三全體學(xué)生數(shù)學(xué)線上學(xué)習(xí)情況進(jìn)行調(diào)查,隨機(jī)抽取部分學(xué)生的4月月診斷性測試成績,按由高到低分為A,B,C,D四個等級,根據(jù)調(diào)查的數(shù)據(jù)繪制成如下的條形統(tǒng)計圖和扇形統(tǒng)計圖,請根據(jù)圖中的信息,解答下列問題:
(1)該校共抽查了 名同學(xué)的數(shù)學(xué)測試成績,扇形統(tǒng)計圖中A等級所占的百分比a= ;
(2)補(bǔ)全條形統(tǒng)計圖;
(3)若該校初三共有1180名同學(xué),請估計該校初三學(xué)生數(shù)學(xué)測試成績優(yōu)秀(測試成績B級以上為優(yōu)秀,含B級)約有 名;
(4)該校老師想從兩男、兩女四位學(xué)生中隨機(jī)選擇兩位了解平時線上學(xué)習(xí)情況,請用列表或畫樹形圖的方法求出恰好選中一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.
(1)證明與推斷:
①求證:四邊形CEGF是正方形;
②推斷:的值為 :
(2)探究與證明:
將正方形CEGF繞點C順時針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關(guān)系,并說明理由:
(3)拓展與運(yùn)用:
正方形CEGF在旋轉(zhuǎn)過程中,當(dāng)B,E,F(xiàn)三點在一條直線上時,如圖(3)所示,延長CG交AD于點H.若AG=6,GH=2,則BC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面上有且只有4個點,這4個點中有一個獨特的性質(zhì):連結(jié)每兩點可得到6條線段,這6條線段有且只有兩種長度.我們把這四個點稱作準(zhǔn)等距點.例如正方形ABCD的四個頂點(如圖1),有AB=BC=CD=DA,AC=BD.其實滿足這樣性質(zhì)的圖形有很多,如圖2中A、B、C、O四個點,滿足AB=BC=CA,OA=OB=OC;如圖3中A、B、C、O四個點,滿足OA=OB=OC=BC,AB=AC.
(1)如圖,若等腰梯形ABCD的四個頂點是準(zhǔn)等距點,且AD∥BC.
①寫出相等的線段(不再添加字母);
②求∠BCD的度數(shù).
(2)請再畫出一個四邊形,使它的四個頂點為準(zhǔn)等距點,并寫出相等的線段.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD于點E,AD平分∠BDE.
(1)求證:AE是⊙O的切線;
(2)如果AB=6,AE=3,求:陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣2x﹣3經(jīng)過點A(﹣2,a),與x軸相交于B、C兩點(B點在C點左側(cè)).
(1)求a的值及B、C兩點坐標(biāo);
(2)點D在拋物線的對稱軸上,且位于x軸的上方,將△BCD沿直線BD翻折得到△BD,若點恰好落在拋物線的對稱軸上,求點和點D的坐標(biāo);
(3)設(shè)P(m,-3)是該拋物線上一點,點Q為拋物線的頂點,在x軸、y軸分別找點M、N,使四邊形MNQP的周長最小,請求出點M、N的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com