【題目】為阻斷新冠疫情向校園蔓延,確保師生生命安全和身體健康,教育部通知,2020年春季學(xué)期延期開學(xué),利用網(wǎng)上平臺,停課不停學(xué),某校對初三全體學(xué)生數(shù)學(xué)線上學(xué)習(xí)情況進行調(diào)查,隨機抽取部分學(xué)生的4月月診斷性測試成績,按由高到低分為A,B,C,D四個等級,根據(jù)調(diào)查的數(shù)據(jù)繪制成如下的條形統(tǒng)計圖和扇形統(tǒng)計圖,請根據(jù)圖中的信息,解答下列問題:

(1)該校共抽查了   名同學(xué)的數(shù)學(xué)測試成績,扇形統(tǒng)計圖中A等級所占的百分比a   ;

(2)補全條形統(tǒng)計圖;

(3)若該校初三共有1180名同學(xué),請估計該校初三學(xué)生數(shù)學(xué)測試成績優(yōu)秀(測試成績B級以上為優(yōu)秀,含B級)約有   名;

(4)該校老師想從兩男、兩女四位學(xué)生中隨機選擇兩位了解平時線上學(xué)習(xí)情況,請用列表或畫樹形圖的方法求出恰好選中一男一女的概率.

【答案】(1) 100,20%;(2)作圖見解析;(3) 590;(4)

【解析】

1)根據(jù)C級的人數(shù)是40,所占的百分比,據(jù)此即可求得總?cè)藬?shù);進而可求出扇形統(tǒng)計圖中A等級所占的百分比a的值;

2)由(1)中的數(shù)據(jù)可求出B級的人數(shù)即可補全條形統(tǒng)計圖;

3)求出A級和B級共占的百分比即可根據(jù)該校初四學(xué)生數(shù)學(xué)測試成績優(yōu)秀;

4)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),找出所選的兩人恰好是一名男生和一名女生的結(jié)果數(shù),然后利用概率公式求解.

1)本次抽樣數(shù)學(xué)測試的學(xué)生人數(shù)是:40÷100(名);a×100%20%,

故答案為:100,20%;

2B級的人數(shù)=10020401030(名),補全條形統(tǒng)計圖如圖所示:

3)該校初四共有1180名同學(xué),估計該校初四學(xué)生數(shù)學(xué)測試成績優(yōu)秀人數(shù)=1180×(30%20%)=590(名),

故答案為:590;

4)畫樹狀圖為:

共有12種等可能的結(jié)果數(shù),其中所選的兩人恰好是一名男生和一名女生的結(jié)果數(shù)為8,

所以所選的兩人恰好是一名男生和一名女生的概率=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小東同學(xué)根據(jù)函數(shù)的學(xué)習(xí)經(jīng)驗,對函數(shù)y 進行了探究,下面是他的探究過程:

1)已知x=-3 0;x1 0,化簡:

①當(dāng)x<-3時,y

②當(dāng)-3≤x≤1時,y

③當(dāng)x1時,y

2)在平面直角坐標(biāo)系中畫出y 的圖像,根據(jù)圖像,寫出該函數(shù)的一條性質(zhì).

3)根據(jù)上面的探究解決,下面問題:

已知A(a,0)x軸上一動點,B(1,0),C(3,0),則ABAC的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)解下列方程.

根為______;

根為______;

根為______;

2)根據(jù)這類方程特征,寫出第n個方程和它的根;

3)請利用(2)的結(jié)論,求關(guān)于x的方程n為正整數(shù))的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,ACBC,將△ABC繞點A逆時針旋轉(zhuǎn)60°,得到△ADE,連接BE,則∠BED的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)為Q(2,﹣1),且與y軸交于點C(0,3),與x軸交于A,B兩點(點A在點B的右側(cè)),點P是該拋物線上的一動點,從點C沿拋物線向點A運動(點P與A不重合),過點P作PD∥y軸,交AC于點D.

(1)求該拋物線的函數(shù)關(guān)系式;

(2)當(dāng)△ADP是直角三角形時,求點P的坐標(biāo);

(3)在題(2)的結(jié)論下,若點E在x軸上,點F在拋物線上,問是否存在以A、P、E、F為頂點的平行四邊形?若存在,求點F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)解析式為ymx22mx+m,二次函數(shù)與x軸交于A、B兩點(BA右側(cè)),與y軸交于C點,二次函數(shù)頂點為M.已知OMB90°

求頂點坐標(biāo).

求二次函數(shù)解析式.

③N為線段BM中點,在二次函數(shù)的對稱軸上是否存在一點P,使得∠PON60°,若存在求出點P坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)中函數(shù)y與自變量x之間部分對應(yīng)值如下表所示,點在函數(shù)圖象上

x

0

1

2

3

y

m

n

3

n

則表格中的m______;當(dāng)時,的大小關(guān)系為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,2)與(0,3)之間(不包括這兩點),對稱軸為直線x=2.下列結(jié)論:abc<0;9a+3b+c>0;③若點M(,y1),點N(,y2)是函數(shù)圖象上的兩點,則y1<y2;<a<﹣其中正確結(jié)論有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C在⊙O上,∠B=∠DCA,ADBC,連結(jié)OD,AC,且ODAC相交于點E

1)求證:CD與⊙O相切;

2)若⊙O的半徑為4,且,求tanDCA的值.

查看答案和解析>>

同步練習(xí)冊答案