【題目】2017年我國“十二五”規(guī)劃圓滿完成,“十三五”規(guī)劃順利實施,經(jīng)濟社會發(fā)展取得歷史性成就,發(fā)生歷史性變革.這五年來,經(jīng)濟實力躍上新臺階,國內生產(chǎn)總值達到82.7萬億元,2018年,我國國內生產(chǎn)總值達到900309億元人民幣,首次邁過90萬億元門檻,比上一年同比增長66%,實現(xiàn)了65%左右的預期發(fā)展目標.下面的統(tǒng)計圖反映了我國2013年到2018年國內生產(chǎn)總值及其增長速度情況,其中國內生產(chǎn)總值絕對數(shù)按現(xiàn)價計算,增長速度按不變價格計算
根據(jù)以上信息,回答下列問題
(1)把統(tǒng)計圖補充完整;
(2)我國2013年到2018年這六年的國內生產(chǎn)總值增長速度的中位數(shù)是 %;
(3)2019年政府工作報告提出,今年的預期目標是國內生產(chǎn)總值比2018年增長6‰﹣6.5%,通過計算說明2019年我國國內生產(chǎn)總值至少達到多少億元,即可達到預期目標.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,于點D,點E是直線AC上一動點,連接DE,過點D作,交直線BC于點F.
探究發(fā)現(xiàn):
如圖1,若,點E在線段AC上,則______;
數(shù)學思考:
如圖2,若點E在線段AC上,則______用含m,n的代數(shù)式表示;
當點E在直線AC上運動時,中的結論是否任然成立?請僅就圖3的情形給出證明;
拓展應用:若,,,請直接寫出CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:正方形OABC的邊OC、OA分別在x、y軸的正半軸上,設點B(4,4),點P(t,0)是x軸上一動點,過點O作OH⊥AP于點H,直線OH交直線BC于點D,連AD.
(1)如圖1,當點P在線段OC上時,求證:OP=CD;
(2)在點P運動過程中,△AOP與以A、B、D為頂點的三角形相似時,求t的值;
(3)如圖2,拋物線y=﹣x2+x+4上是否存在點Q,使得以P、D、Q、C為頂點的四邊形為平行四邊形?若存在,請求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(操作發(fā)現(xiàn))
(1)如圖1,將△ABC繞點A逆時針旋轉90°得到△ADE,連接BD,則∠ABD的度數(shù)是______.
(類比探究)
(2)如圖2,在等腰直角三角形ABC內取一點P,使∠APB=135°,將△ABP繞頂點A逆時針旋轉90°得到△ACP',連接PP'.請猜想BP與CP'有怎樣的位置關系,并說明理由.
(解決問題)
(3)如圖3,在等腰直角三角形ABC內任取一點P,連接PA、PB、PC.求證:PC+PA>PB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,E是BC的中點,以AC為直徑的⊙O與AB邊交于點D,連接DE.
(1)求證:DE是⊙O的切線;
(2)若CD=6cm,DE=5cm,求⊙O直徑的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+2ax﹣3a(a<0)與x軸相交于A、B兩點與y軸相交于點C,頂點為D,直線DC與x軸相交于點E.
(1)當a=﹣1時,拋物線頂點D的坐標為 ,OE= ;
(2)OE的長是否與a值有關,說明你的理由;
(3)設∠DEO=β,當β從30°增加到60°的過程中,點D運動的路徑長;
(4)以DE為斜邊,在直線DE的右上方作等腰Rt△PDE.設P(m,n),請直接寫出n關于m的函數(shù)解析式及自變量m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,CE⊥AD,交AD的延長線于點E.
(1)求證:∠BDC=∠A;
(2)若CE=4,DE=2,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:長寬比為:1(n為正整數(shù))的矩形稱為矩形.
下面,我們通過折疊的方式折出一個矩形,如圖a所示.
操作1:將正方形ABEF沿過點A的直線折疊,使折疊后的點B落在對角線AE上的點G處,折痕為AH.
操作2:將FE沿過點G的直線折疊,使點F、點E分別落在邊AF,BE上,折痕為CD.則四邊形ABCD為矩形.
(1)證明:四邊形ABCD為矩形;
(2)點M是邊AB上一動點.
①如圖b,O是對角線AC的中點,若點N在邊BC上,OM⊥ON,連接MN.求tan∠OMN的值;
②若AM=AD,點N在邊BC上,當△DMN的周長最小時,求的值;
③連接CM,作BR⊥CM,垂足為R.若AB=2,則DR的最小值= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解八年級學生雙休日的課外閱讀情況,學校隨機調查了該年級25名學生,得到了一組樣本數(shù)據(jù),其統(tǒng)計表如下:
八年級25名學生雙休日課外閱讀時間統(tǒng)計表
閱讀時間 | 1小時 | 2小時 | 3小時 | 4小時 | 5小時 | 6小時 |
人數(shù) | 3 | 4 | 6 | 3 | 2 |
(1)請求出閱讀時間為4小時的人數(shù)所占百分比;
(2)試確定這個樣本的眾數(shù)和平均數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com