【題目】(1)如圖①,在△ABC中,已知∠ABC、∠ACB的平分線相交于點(diǎn)O,過點(diǎn)O作EF∥BC交AB、AC于E、F.請(qǐng)寫出圖中的等腰三角形,并找出EF與BE、CF間的關(guān)系;
(2) 如圖②中∠ABC的平分線與三角形ABC的外角∠ACG的平分線CO交于O,過O點(diǎn)作OE∥BC交AB于E,交AC于F.圖中有等腰三角形嗎?如果有,請(qǐng)寫出來.EF與BE、CF間的關(guān)系如何?請(qǐng)說明理由.
【答案】(1)等腰三角形有△EBO和△CFO,EF=BE+CF;(2)有等腰三角形,它們分別是△EBO和△CFO.EF=BE-CF.理由見解析.
【解析】
(1)由EF∥BC可得∠EOB=∠OBC,由OB平分∠ABC可得∠EBO=∠OBC,由此得到∠EOB=∠EBO,然后即可證明△BEO是等腰三角形,同理可證:△CFO是等腰三角形;根據(jù)等腰三角形的性質(zhì)求得OE=EB,OF=FC,從而證得EF=BE+FC;
(2)根據(jù)角平分線的定義以及平行線的性質(zhì)進(jìn)行角之間的等量代換,根據(jù)等邊對(duì)等角,發(fā)現(xiàn)兩個(gè)等腰三角形:△BOE和△COF,即可得出所求的結(jié)論.
(1)等腰三角形有△EBO和△CFO,EF=BE+CF.
(2)有等腰三角形,它們分別是△EBO和△CFO.
EF=BE-CF.
理由:∵BO平分∠ABC,
∴∠ABO=∠OBC.
∵OE∥BC,
∴∠EOB=∠OBC,
∴∠EOB=∠EBO,
∴BE=EO.
同理,CF=OF,
∵EO=EF+OF,
∴EF=EO-OF=BE-CF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從熱氣球C處測(cè)得地面A,B兩點(diǎn)的俯角分別為30°,45°,此時(shí)熱氣球C處所在位置到地面上點(diǎn)A的距離為400米.求地面上A,B兩點(diǎn)間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣ x2+bx+c的圖象與x軸的正半軸相交于點(diǎn)A(2,0)和點(diǎn)B、與y軸相交于點(diǎn)C,它的頂點(diǎn)為M、對(duì)稱軸與x軸相交于點(diǎn)N.
(1)用b的代數(shù)式表示頂點(diǎn)M的坐標(biāo);
(2)當(dāng)tan∠MAN=2時(shí),求此二次函數(shù)的解析式及∠ACB的正切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果三角形的一個(gè)外角等于和它相鄰的內(nèi)角的4倍,等于與它不相鄰的一個(gè)內(nèi)角的2倍,則此三角形各內(nèi)角的度數(shù)是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有一個(gè)內(nèi)角為90°,且對(duì)角線相等的四邊形稱為準(zhǔn)矩形.
(1)①如圖1,準(zhǔn)矩形ABCD中,∠ABC=90°,若AB=2,BC=3,則BD=;
②如圖2,直角坐標(biāo)系中,A(0,3),B(5,0),若整點(diǎn)P使得四邊形AOBP是準(zhǔn)矩形,則點(diǎn)P的坐標(biāo)是;(整點(diǎn)指橫坐標(biāo)、縱坐標(biāo)都為整數(shù)的點(diǎn))
(2)如圖3,正方形ABCD中,點(diǎn)E、F分別是邊AD、AB上的點(diǎn),且CF⊥BE,求證:四邊形BCEF是準(zhǔn)矩形;
(3)已知,準(zhǔn)矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,當(dāng)△ADC為等腰三角形時(shí),請(qǐng)直接寫出這個(gè)準(zhǔn)矩形的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,李老師出示了如下框中的題目.
在等邊三角形ABC中,點(diǎn)E在AB上,點(diǎn)D在CB的延長(zhǎng)線上,且ED=EC,如圖.試確定線段AE與DB的大小關(guān)系,并說明理由. |
小敏與同桌小聰討論后,進(jìn)行了如下解答:
(1)特殊情況,探索結(jié)論
當(dāng)點(diǎn)E為AB的中點(diǎn)時(shí),如圖1,確定線段AE與的DB大小關(guān)系.請(qǐng)你直接寫出結(jié)論:
AE DB(填“>”,“<”或“=”).
圖1 圖2
(2)特例啟發(fā),解答題目
解:題目中,AE與DB的大小關(guān)系是:AE DB(填“>”,“<”或“=”).
理由如下:如圖2,過點(diǎn)E作EF∥BC,交AC于點(diǎn)F.
(請(qǐng)你完成以下解答過程)
(3)拓展結(jié)論,設(shè)計(jì)新題
在等邊三角形ABC中,點(diǎn)E在直線AB上,點(diǎn)D在直線BC上,且ED=EC.若△ABC的邊長(zhǎng)為1,AE=2,求CD的長(zhǎng)(請(qǐng)你直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠A,∠B,∠C的對(duì)邊分別記為,,,由下列條件不能判定△ABC為直角三角形的是( ).
A.∠A+∠B=∠C
B.∠A∶∠B∶∠C =1∶2∶3
C.
D.∶∶=3∶4∶6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分線,DE⊥AB于點(diǎn)E.
(1)如圖1,連接EC,求證:△EBC是等邊三角形;
(2)點(diǎn)M是線段CD上的一點(diǎn)(不與點(diǎn)C,D重合),以BM為一邊,在BM的下方作∠BMG=60°,MG交DE延長(zhǎng)線于點(diǎn)G.求證:AD=DG+MD;
(3)點(diǎn)N是線段AD上的一點(diǎn),以BN為一邊,在BN的下方作∠BNG=60°,NG交DE延長(zhǎng)線于點(diǎn)G.請(qǐng)?jiān)趫D3中畫出圖形,并直接寫出ND,DG與AD數(shù)量之間的關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com