精英家教網 > 初中數學 > 題目詳情

【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論:①2a+b<0;abc>0;4a2b+c>0;a+c>0,其中正確結論的個數為( )

A. 1 B. 2 C. 3 D. 4

【答案】B

【解析】

根據拋物線的開口方向和對稱軸判斷;根據拋物線與y軸的交點和對稱軸判斷;根據x=-2時,y<0判斷;根據x=±1時,y>0判斷④.

①∵拋物線開口向下,

a<0,

<1,

∴2a+b<0,①正確;

②拋物線與y軸交于正半軸,

c>0,

>0,a<0,

b>0,

abc<0,②錯誤;

③當x=2時,y<0,

∴4a2b+c<0,③錯誤;

x=±1時,y>0,

ab+c>0,a+b+c>0,

a+c>0,④正確,

故選:B

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】操作與證明:如圖1,把一個含45°角的直角三角板ECF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點C重合,點E、F分別在正方形的邊CB、CD上,連接AF.取AF中點M,EF的中點N,連接MD、MN.

(1)連接AE,求證:AEF是等腰三角形;

猜想與發(fā)現:

(2)在(1)的條件下,請判斷MD、MN的數量關系和位置關系,得出結論.

結論1:DM、MN的數量關系是 ;

結論2:DM、MN的位置關系是

拓展與探究:

(3)如圖2,將圖1中的直角三角板ECF繞點C順時針旋轉180°,其他條件不變,則(2)中的兩個結論還成立嗎?若成立,請加以證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC三個頂點坐標分別為A(﹣3,﹣1),B(﹣4,﹣4),C(﹣1,﹣2),結合所給平面直角坐標系解答下列問題:

(1)將△ABC向右平移5個單位長度,再向上平移6個單位,畫出平移后的△A1B1C1

(2)將△ABC繞原點O順時針旋轉90°,畫出旋轉后的△A2B2C2,此時點A2的坐標為_____

(3)若以A、B、C、D為頂點的四邊形是平行四邊形,請直接滿足條件的點D的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,某同學把一塊三角形的玻璃打碎成了三塊,現在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是(

A.帶①去B.帶②去C.帶③去D.帶①和②去

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知點Mn,﹣n在第二象限,過點M的直線y=kx+b(0<k<1)分別交x軸、y軸于點A,B,過點MMNx軸于點N,則下列點在線段AN的是( 。

A. ((k﹣1)n,0) B. ((k+n,0)) C. ,0) D. ((k+1)n,0)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】石獅泰禾某童裝專賣店在銷售中發(fā)現,一款童裝每件進價為80元,銷售價為120元時,每天可售出20件,為了迎接“十一”國慶節(jié),商店決定采取適當的降價措施,以擴大銷售量,增加利潤,經市場調查發(fā)現,如果每件童裝降價1元,那么平均可多售出2件.

(1)設每件童裝降價x元時,每天可銷售______ 件,每件盈利______ 元;(用x的代數式表示)

(2)每件童裝降價多少元時,平均每天贏利1200元.

(3)要想平均每天贏利2000元,可能嗎?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在足夠大的空地上有一段長為a米的舊墻MN,某人利用舊墻和木欄圍成一個矩形菜園ABCD,其中AD≤MN,已知矩形菜園的一邊靠墻,另三邊一共用了100米木欄.

(1)若a=20,所圍成的矩形菜園的面積為450平方米,求所利用舊墻AD的長;

(2)求矩形菜園ABCD面積的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,圖中的小方格都是邊長為1的正方形, △ABC△A′ B′ C′是關于點0為位似中心的位似圖形,它們的頂點都在小正方形的頂點上.

(1)畫出位似中心點0

(2)求出△ABC△A′B′C′的位似比;

(3)以點0為位似中心,再畫一個△A1B1C1,使它與△ABC的位似比等于1.5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】郴州市正在創(chuàng)建全國文明城市,某校擬舉辦創(chuàng)文知識搶答賽,欲購買A、B兩種獎品以鼓勵搶答者.如果購買A20件,B15件,共需380元;如果購買A15件,B10件,共需280元.

(1)A、B兩種獎品每件各多少元?

(2)現要購買A、B兩種獎品共100件,總費用不超過900元,那么A種獎品最多購買多少件?

查看答案和解析>>

同步練習冊答案