【題目】石獅泰禾某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進價為80元,銷售價為120元時,每天可售出20件,為了迎接“十一”國慶節(jié),商店決定采取適當?shù)慕祪r措施,以擴大銷售量,增加利潤,經市場調查發(fā)現(xiàn),如果每件童裝降價1元,那么平均可多售出2件.
(1)設每件童裝降價x元時,每天可銷售______ 件,每件盈利______ 元;(用x的代數(shù)式表示)
(2)每件童裝降價多少元時,平均每天贏利1200元.
(3)要想平均每天贏利2000元,可能嗎?請說明理由.
【答案】(1)(20+2x),(40﹣x);(2)每件童裝降價20元或10元,平均每天贏利1200元;(3)不可能做到平均每天盈利2000元.
【解析】
(1)、根據(jù)銷售量=原銷售量+因價格下降而增加的數(shù)量;每件利潤=原售價-進價-降價,列式即可;(2)、根據(jù)總利潤=單件利潤×數(shù)量,列出方程即可;(3)、根據(jù)(2)中的相關關系方程,判斷方程是否有實數(shù)根即可.
(1)、20+2x;40-x;
(2)、根據(jù)題意可得:(20+2x)(40-x)=1200,解得:
即每件童裝降價10元或20元時,平均每天盈利1200元;
(3)、(20+2x)(40-x)=2000, , ∵此方程無解, ∴不可能盈利2000元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),在中,已知,,把一塊含角的三角板的直角頂點放在的中點上(直角三角板的短直角邊為,長直角邊為),將直角三角板繞點按逆時針方向旋轉.
(1)在圖(1)中,交于,交于.
①證明;
②在這一過程中,直角三角板與的重疊部分為四邊形,請說明四邊形的面積是否發(fā)生變化?若發(fā)生變化,請說明是如何變化的,若不發(fā)生變化,求出其面積.
(2)繼續(xù)旋轉至如圖(2)的位置,延長交于,延長交于,是否仍然成立?若成立,請給出證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在⊙O中,AB為直徑,C為⊙O上一點.
(1)如圖1,過點C作⊙O的切線,與AB延長線相交于點P,若∠CAB=27°,求∠P的度數(shù);
(2)如圖2,D為弧AB上一點,OD⊥AC,垂足為E,連接DC并延長,與AB的延長線交于點P,若∠CAB=10°,求∠P的大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,MN是⊙O的直徑,作AB⊥MN,垂足為點D,連接AM,AN,點C為弧AN上一點,且弧AC=弧AM,連接CM,交AB于點E,交AN于點F,現(xiàn)給出以下結論:
①AD=BD;②∠MAN=90°;③弧AM=弧BM;④∠ACM+∠ANM=∠MOB;⑤AE=MF.
其中正確結論的個數(shù)是( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論:①2a+b<0;②abc>0;③4a2b+c>0;④a+c>0,其中正確結論的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y=kx+4的圖象經過點(-3,-2).
(1)求這個函數(shù)關系式;
(2)判斷點(-5,3)是否在此函數(shù)的圖象上,說明理由;
(3)求出該函數(shù)圖像與坐標軸圍成的三角形的面積。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D、E兩點分別在BC、AD上,且AD為∠BAC的角平分線,若∠ABE∠C,AE:ED=2:1,則△BDE與△ABC的面積之比為( )
A. 1:6 B. 1:9 C. 2:13 D. 2:15
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.動點M,N從點C同時出發(fā),均以每秒1cm的速度分別沿CA、CB向終點A,B移動,同時動點P從點B出發(fā),以每秒2cm的速度沿BA向終點A移動,連接PM,PN,設移動時間為t(單位:秒,0<t<2.5).
(1)當t為何值時,以A,P,M為頂點的三角形與△ABC相似?
(2)是否存在某一時刻t,使四邊形APNC的面積S有最小值?若存在,求S的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AD平分∠BAC,E是BC上一點,BE=CD,EF∥AD交AB于F點,交CA的延長線于P,CH∥AB交AD的延長線于點H,
①求證:△APF是等腰三角形;
②猜想AB與PC的大小有什么關系?證明你的猜想.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com