【題目】小明和小亮分別從甲地和乙地同時出發(fā),沿同一條路相向而行,小明開始跑步,中途改為步行,到達(dá)乙地恰好用小亮騎自行車以的速度直接到甲地,兩人離甲地的路程與各自離開出發(fā)地的時間之間的函數(shù)圖象如圖所示,
甲、乙兩地之間的路程為______m,小明步行的速度為______;
求小亮離甲地的路程y關(guān)于x的函數(shù)表達(dá)式,并寫出自變量x的取值范圍;
求兩人相遇的時間.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線OM⊥ON,垂足為O,三角板的直角頂點C落在∠MON的內(nèi)部,三角板的另兩條直角邊分別與ON、OM交于點D和點B.
(1)填空:∠OBC+∠ODC= ;
(2)如圖,若DE平分∠ODC,BF平分∠CBM,求證:DE⊥BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們規(guī)定:a*b=10a×10b,例如圖3*4=103×104=107.
(1)試求12*3和2*5的值;
(2)想一想(a*b)*c與a*(b*c)相等嗎?如果相等,請驗證你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種型號汽車油箱容量為40L,每行駛100km耗油10L.設(shè)一輛加滿油的該型號汽車行駛路程為x(km),行駛過程中油箱內(nèi)剩余油量為y(L)
(1)求y與x之間的函數(shù)表達(dá)式;
(2)為了有效延長汽車使用壽命,廠家建議每次加油時油箱內(nèi)剩余油量不低于油箱容量的四分之一,按此建議,求該輛汽車最多行駛的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為邊長為2的正方形ABCD的對角線BD上任一點,過點P作PE⊥BC于點E,PF⊥CD于點F,連接EF.給出以下4個結(jié)論:①AP=EF;②AP⊥EF;③EF最短長度為;④若∠BAP=30°時,則EF的長度為2.其中結(jié)論正確的有( )
A. ①②③B. ①②④C. ②③④D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC,∠C=90°,D為AB邊上一點,點M、N分別在BC、AC邊上,且DM⊥DN.作MF⊥AB于點F,NE⊥AB于點E.
(1)特殊驗證:如圖1,若AC=BC,且D為AB中點,求證:DM=DN,AE=DF;
(2)拓展探究:若AC≠BC.
①如圖2,若D為AB中點,(1)中的兩個結(jié)論有一個仍成立,請指出并加以證明;
②如圖3,若BD=kAD,條件中“點M在BC邊上”改為“點M在線段CB的延長線上”,其它條件不變,請?zhí)骄緼E與DF的數(shù)量關(guān)系并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=3.分別以OA、OC邊所在直線為x軸、y軸建立如圖1所示的平面直角坐標(biāo)系.
(1)求點B的坐標(biāo);
(2)已知D、E分別為線段OC、OB上的點,OD=5,OE=2EB,直線DE交x軸于點F,過點E作EG⊥x軸于G,且EG:OG=2.求直線DE的解析式;
(3)點M是(2)中直線DE上的一個動點,在x軸上方的平面內(nèi)是否存在另一點N,使以O、D、M、N為頂點的四邊形是菱形?若存在,請求出點N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形紙片ABC中,∠A=65°,∠B=75°,將∠C沿DE對折,使點C落在ΔABC外的點處,若∠1=20°,則∠2的度數(shù)為( )
A. 80°B. 90°
C. 100°D. 110°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com