【題目】如圖,點D、E分別是等邊三角形ABC的邊BCAC上的點,連接AD、BE交于點O,且ABD≌△BCE

1)若AB=3,AE=2,則BD= ;

2)若∠CBE=15°,則∠AOE=

3)若∠BAD=a,猜想∠AOE的度數(shù),并說明理由.

【答案】1BD=1;(260°;(3)∠AOE =60°

【解析】

1)根據(jù)等邊三角形的性質(zhì)求出AC,得到EC,根據(jù)全等三角形的性質(zhì)解答;

2)根據(jù)全等三角形的性質(zhì)得到∠BAD=CBE=15°,根據(jù)三角形的外角性質(zhì)計算即可;

3)仿照(2)的作法解答.

解:(1)∵△ABC是等邊三角形,

AC=AB=3,

EC=AC-AE=1

∵△ABD≌△BCE,

BD=EC=1,

故答案為:1

2)∵△ABD≌△BCE,

∴∠BAD=CBE=15°

∵∠CBE=15°,

∴∠ABO=45°,

∴∠AOE=BAD+ABO=60°,

故答案為:60°

3)由(2)得,∠BAD=CBE,

∵∠ABO+CBE=60°

∴∠AOE=BAD+ABO=60°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市大力發(fā)展綠色交通,構(gòu)建公共綠色交通體系,“共享單車”的投入使用給人們的出行帶來便利.小明隨機調(diào)查了若干市民租用共享單車的騎車時間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如圖統(tǒng)計圖,請根據(jù)圖中信息,解答下列問題:

(1)這次被調(diào)查的總?cè)藬?shù)是______;

(2)補全條形統(tǒng)計圖;

(3)在扇形統(tǒng)計圖中,求表示A組(t≤10分)的扇形圓心角的度數(shù);

(4)如果騎共享單車的平均速度為12km/h,請估算,在租用共享單車的市民中,騎車路程不超過6km的人數(shù)所占的百分比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 已知反比例函數(shù)的圖象的一支位于第一象限

(1)該函數(shù)圖象的另一分支位于第_____象限,m的取值范圍是____________

(2)已知點A在反比例函數(shù)圖象上,ABx軸于點B,AOB的面積為3,求m的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將正方形紙片折疊,使點落在邊上的處,點落在處,若,則的度數(shù)為( 。

A. 100°B. 110°C. 120°D. 130°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,ABC中,∠BAC=100°,AB=AC,PBC邊上任意一點.若點E、F分別在AB、AC上,且∠EPF=40°,求證:BPE∽△CFP;

(2)如圖2,點P在邊CB的延長線上,點E在邊AB上,點F在邊AC的延長線上,仍有∠EPF=40°,探索PB·PCBE·CF有怎樣的關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在書寫藝術(shù)字時,常常運用畫平行線段這種基本作圖方法,此圖是在書寫字“M”:

(1)請從正面,上面,右側(cè)三個不同方向上各找出一組平行線段,并用字母表示出來;

(2)EFA′B′有何位置關(guān)系?CC′DH有何位置關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC的三邊長分別為ab,c,下列條件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b-c);④abc=5:12:13,其中能判斷△ABC是直角三角形的個數(shù)有( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,B=90°,AB=16cm,BC=12cm,P、Q是ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發(fā),設(shè)出發(fā)的時間為t秒.

(1)出發(fā)2秒后,求PQ的長;

(2)當點Q在邊BC上運動時,出發(fā)幾秒鐘后,PQB能形成等腰三角形?

(3)當點Q在邊CA上運動時,求能使BCQ成為等腰三角形的運動時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E為邊CD上一點,將沿AE折疊至處,與CE交于點,,則的大小為________

查看答案和解析>>

同步練習冊答案