【題目】如圖,在ABCD中,E為邊CD上一點,將沿AE折疊至處,與CE交于點,,則的大小為________

【答案】

【解析】

由平行四邊形的性質(zhì)得出∠D=B=52°,由折疊的性質(zhì)得:∠D′=D=52°,∠EAD′=DAE=20°,由三角形的外角性質(zhì)求出∠AEF=72°,與三角形內(nèi)角和定理求出∠AED′=108°,即可得出∠FED′的大小.

解:∵四邊形ABCD是平行四邊形,
∴∠D=B=52°
由折疊的性質(zhì)得:∠D′=D=52°,∠EAD′=DAE=20°,
∴∠AEF=D+DAE=52°+20°=72°,∠AED′=180°-EAD′-D′=108°,
∴∠FED′=108°-72°=36°
故答案為:36°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點D、E分別是等邊三角形ABC的邊BC、AC上的點,連接AD、BE交于點O,且ABD≌△BCE

1)若AB=3,AE=2,則BD= ;

2)若∠CBE=15°,則∠AOE=

3)若∠BAD=a,猜想∠AOE的度數(shù),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程組:(1);(2);(3);(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,B分別在x軸、y軸上,點D在第一象限內(nèi),DC⊥x軸于點C,AO=DC=2,AB=DA=,反比例函數(shù)y= (k>0)的圖象過CD的中點E.

(1)求證:△AOB≌△DCA;

(2)求k的值;

(3)△BFG和△DCA關(guān)于某點成中心對稱,其中點F在y軸上,試判斷點G是否在反比例函數(shù)的圖象上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形OABC的頂點C的坐標為(6,8).頂點Ax軸的正半軸上,反比例函數(shù)的圖象經(jīng)過頂B點.

1)求點AB的坐標;

2)求k值及直線AB對應(yīng)的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,直角△ABC的三個頂點分別是A(﹣3,1),B(0,3),C(0,1)

(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C1

(2)分別連結(jié)AB1、BA1后,求四邊形AB1A1B的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀學(xué)習(xí):

數(shù)學(xué)中有很多恒等式可以用圖形的面積來得到.

如圖1,可以求出陰影部分的面積是;如圖2,若將陰影部分裁剪下來,重新拼成一個矩形,它的長是a+b,寬是a-b,比較圖1,圖2陰影部分的面積,可以得到恒等式.

(1)觀察圖3,請你寫出,,之間的一個恒等式_______________;

(2)根據(jù)(1)的結(jié)論,若,,求出下列各式的值:①;②;

(3)觀察圖4,請寫出圖4所表示的代數(shù)恒等式:______________________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,臺風中心位于點,并沿東北方向移動,已知臺風移動的速度為,受影響區(qū)域的半徑為,市位于點的北偏東方向上,距離處.

1市是否受到這次臺風的影響?為什么?

2)若市受到臺風影響,求受影響的時間有多長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)邊長為的正方形的中心在直線上,它的一組對邊垂直于直線,半徑為的圓的圓心在直線上運動,、兩點之間的距離為

)如圖①,當時,填表:

、之間的數(shù)量關(guān)系

與正方形的公共點個數(shù)

__________

__________

__________

)如圖②,與正方形有個公共點、、、、,求此時之間的數(shù)量關(guān)系:

)由()可知,、、之間的數(shù)量關(guān)系和⊙與正方形的公共點個數(shù)密切相關(guān).當時,請根據(jù)、之間的數(shù)量關(guān)系,判斷⊙與正方形的公共點個數(shù).

)當之間滿足()中的數(shù)量關(guān)系時,⊙與正方形的公共點個數(shù)為__________

查看答案和解析>>

同步練習(xí)冊答案