【題目】在等腰ABC與等腰ADE中,ABAC,ADAE,∠BAC=∠DAE,且點(diǎn)D、E、C三點(diǎn)在同一條直線上,連接BD

1)如圖1,求證:ADB≌△AEC

2)如圖2,當(dāng)∠BAC=∠DAE90°時(shí),試猜想線段AD,BD,CD之間的數(shù)量關(guān)系,并寫(xiě)出證明過(guò)程;

3)如圖3,當(dāng)∠BAC=∠DAE120°時(shí),請(qǐng)直接寫(xiě)出線段AD,BDCD之間的數(shù)量關(guān)系式為:   (不寫(xiě)證明過(guò)程)

【答案】1)見(jiàn)解析;(2CDAD+BD,理由見(jiàn)解析;(3CDAD+BD

【解析】

1)由SAS可證ADB≌△AEC

2)由SAS可證ADB≌△AEC,可得BDCE,由直角三角形的性質(zhì)可得DEAD,可得結(jié)論;

3)由DAB≌△EAC,可知BDCE,由勾股定理可求DHAD,由ADAE,AHDE,推出DHHE,由CDDE+EC2DH+BDAD+BD,即可解決問(wèn)題;

證明:(1)∵∠BAC=∠DAE

∴∠BAD=∠CAE,

又∵ABACADAE,

∴△ADB≌△AECSAS);

2CDAD+BD

理由如下:∵∠BAC=∠DAE,

∴∠BAD=∠CAE,

又∵ABAC,ADAE,

∴△ADB≌△AECSAS);

BDCE

∵∠BAC90°,ADAE

DEAD,

CDDE+CE,

CDAD+BD;

3)作AHCDH

∵∠BAC=∠DAE,

∴∠BAD=∠CAE,

又∵ABACADAE,

∴△ADB≌△AECSAS);

BDCE,

∵∠DAE120°ADAE,

∴∠ADH30°

AHAD,

DHAD,

ADAE,AHDE

DHHE,

CDDE+EC2DH+BDAD+BD

故答案為:CDAD+BD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O△ABC內(nèi)一點(diǎn),連結(jié)OBOC,并將AB、OBOC、AC的中點(diǎn)DE、FG依次連結(jié),得到四邊形DEFG

1)求證:四邊形DEFG是平行四邊形;

2)若MEF的中點(diǎn),OM=3∠OBC∠OCB互余,求DG的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】牛奶是最古老的天然飲料之一,被譽(yù)為“白色血液”,對(duì)人體的重要性可想而知,現(xiàn)已成為國(guó)家營(yíng)養(yǎng)餐計(jì)劃備選食品之一.為推行國(guó)家營(yíng)養(yǎng)餐計(jì)劃,某乳品公司向某營(yíng)養(yǎng)餐中心運(yùn)輸一批牛奶,由鐵路運(yùn)輸每千克只需運(yùn)費(fèi)0.58 元;由公路運(yùn)輸,每千克需運(yùn)費(fèi)0.28元,還需其他費(fèi)用600元.請(qǐng)?zhí)骄窟x用哪種運(yùn)輸方式所需費(fèi)用較少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l1yk1x+6x軸、y軸分別交于A、B兩點(diǎn),且OBOA,直線l2yk2x+b經(jīng)過(guò)點(diǎn)C,1),與x軸、y軸、直線AB分別交于點(diǎn)E、F、D三點(diǎn).

1)求直線l1的解析式;

2)如圖1,連接CB,當(dāng)CDAB時(shí),求點(diǎn)D的坐標(biāo)和BCD的面積;

3)如圖2,當(dāng)點(diǎn)D在直線AB上運(yùn)動(dòng)時(shí),在坐標(biāo)軸上是否存在點(diǎn)Q,使QCD是以CD為底邊的等腰直角三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,⊙O的半徑為rr0),若點(diǎn)P′在射線OP上,滿足OP′OP=r2,則稱點(diǎn)P′是點(diǎn)P關(guān)于⊙O反演點(diǎn)

如圖2,⊙O的半徑為4,點(diǎn)B⊙O上,∠BOA=60°,OA=8,若點(diǎn)A′,B′分別是點(diǎn)A,B關(guān)于⊙O的反演點(diǎn),求A′B′的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線x軸交于點(diǎn)A,與y軸交于點(diǎn)C.拋物線經(jīng)過(guò)A,C兩點(diǎn),且與x軸交于另一點(diǎn)B點(diǎn)B在點(diǎn)A右側(cè)

1求拋物線的解析式及點(diǎn)B坐標(biāo);

2若點(diǎn)M是線段BC上的一動(dòng)點(diǎn),過(guò)點(diǎn)M的直線EF平行y軸交x軸于點(diǎn)F,交拋物線于點(diǎn)E.求ME長(zhǎng)的最大值;

3試探究當(dāng)ME取最大值時(shí),在拋物線上、x軸下方是否存在點(diǎn)P,使以M,F(xiàn),B,P為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一類隨機(jī)事件概率的計(jì)算方法:設(shè)試驗(yàn)結(jié)果落在某個(gè)區(qū)域S中的每一點(diǎn)的機(jī)會(huì)均等,用A表示事件試驗(yàn)結(jié)果落在S中的一個(gè)小區(qū)域M,那么事件A發(fā)生的概率P(A)=有一塊邊長(zhǎng)為30cm的正方形ABCD飛鏢游戲板,假設(shè)飛鏢投在游戲板上的每一點(diǎn)的機(jī)會(huì)均等.求下列事件發(fā)生的概率:

(1)在飛鏢游戲板上畫(huà)有半徑為5cm的一個(gè)圓(如圖1),求飛鏢落在圓內(nèi)的概率;

(2)飛鏢在游戲板上的落點(diǎn)記為點(diǎn)O,求△OAB為鈍角三角形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線L經(jīng)過(guò)點(diǎn)A0﹣1),且與雙曲線c交于點(diǎn)B21).

1)求雙曲線c及直線L的解析式;

2)已知Pa﹣1a)在雙曲線c上,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了解學(xué)生對(duì)新聞、體育、娛樂(lè)、動(dòng)畫(huà)四類電視節(jié)目的喜愛(ài)情況,進(jìn)行了統(tǒng)計(jì)調(diào)查隨機(jī)調(diào)查了某班所有同學(xué)最喜歡的節(jié)目每名學(xué)生必選且只能選擇四類節(jié)目中的一類并將調(diào)查結(jié)果繪成如下不完整的統(tǒng)計(jì)圖根據(jù)兩圖提供的信息,回答下列問(wèn)題:

最喜歡娛樂(lè)類節(jié)目的有______人,圖中______;

請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

根據(jù)抽樣調(diào)查結(jié)果,若該校有1800名學(xué)生,請(qǐng)你估計(jì)該校有多少名學(xué)生最喜歡娛樂(lè)類節(jié)目;

在全班同學(xué)中,有甲、乙、丙、丁等同學(xué)最喜歡體育類節(jié)目,班主任打算從甲、乙、丙、丁4名同學(xué)中選取2人參加學(xué)校組織的體育知識(shí)競(jìng)賽,請(qǐng)用列表法或樹(shù)狀圖求同時(shí)選中甲、乙兩同學(xué)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案