【題目】1是甲、乙兩個(gè)圓柱形水槽,一個(gè)圓柱形的空玻璃杯放置在乙槽中(空玻璃杯的厚度忽略不計(jì)).將甲槽的水勻速注入乙槽的空玻璃杯中,甲水槽內(nèi)最高水位y(厘米)與注水時(shí)間t(分鐘)之間的函數(shù)關(guān)系如圖2線段DE所示,乙水槽(包括空玻璃杯)內(nèi)最高水位y(厘米)與注水時(shí)間t(分鐘)之間的函數(shù)關(guān)系如圖2折線OABC所示.記甲槽底面積為S1,乙槽底面積為S2,乙槽中玻璃杯底面積為S3,則S1S2S3的值為_______

【答案】452

【解析】

DE線段反映了甲槽中水位的變化,OA線段反映了乙槽中玻璃杯中水位的變化,BC線段可反映乙槽水面的變化,根據(jù)這3段線段求解可得.

由函數(shù)圖象得,甲槽最高水位為10cm,乙槽最高水位為8cm

,

∵乙槽中水杯從0上升到5cm用時(shí)2分鐘,甲槽2分鐘下降cm,

,

S1S2S3452,

故答案為:452

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B兩點(diǎn)在反比例函數(shù)k0,x0)的圖象上,ACy軸于點(diǎn)CBDx軸于點(diǎn)D,點(diǎn)A的橫坐標(biāo)為a,點(diǎn)B的橫坐標(biāo)為b,且ab

1)若△AOC的面積為4,求k值;

2)若a1,bk,當(dāng)AOAB時(shí),試說明△AOB是等邊三角形;

3)若OAOB,證明:OCOD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平行四邊形ABCD中,AEBC,垂足為E,CE=AB,點(diǎn)FCE的中點(diǎn),點(diǎn)G在線段CD上,聯(lián)結(jié)DF,交AG于點(diǎn)M,交EG于點(diǎn)N,且∠DFC=EGC

1)求證:CG=DG;

2)求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】參照學(xué)習(xí)函數(shù)的過程方法,探究函數(shù)的圖像與性質(zhì),因?yàn)?/span>,即,所以我們對(duì)比函數(shù)來探究列表:

-4

-3

-2

-1

1

2

3

4

1

2

4

-4

-2

-1

<>

2

3

5

-3

-2

0

描點(diǎn):在平面直角坐標(biāo)系中以自變量的取值為橫坐標(biāo),以相應(yīng)的函數(shù)值為縱坐標(biāo),描出相應(yīng)的點(diǎn)如圖所示:

1)請(qǐng)把軸左邊各點(diǎn)和右邊各點(diǎn)分別用一條光滑曲線,順次連接起來;

2)觀察圖象并分析表格,回答下列問題:

①當(dāng)時(shí),的增大而______;(“增大”或“減小”)

的圖象是由的圖象向______平移______個(gè)單位而得到的;

③圖象關(guān)于點(diǎn)______中心對(duì)稱.(填點(diǎn)的坐標(biāo))

3)函數(shù)與直線交于點(diǎn),,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,ABAC,ADBC邊上的中線,點(diǎn)EAD上一點(diǎn),過點(diǎn)BBFEC,交AD的延長(zhǎng)線于點(diǎn)F,連接BE,CF

1)求證:BDF≌△CDE

2)當(dāng)EDBC滿足什么數(shù)量關(guān)系時(shí),四邊形BECF是正方形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于點(diǎn)A(﹣2,0)和Bl,0),與y軸交于點(diǎn)C

1)求拋物線的表達(dá)式;

2)作射線AC,將射線AC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°交拋物線于另一點(diǎn)D,在射線AD上是否存在一點(diǎn)H,使△CHB的周長(zhǎng)最小.若存在,求出點(diǎn)H的坐標(biāo);若不存在,請(qǐng)說明理由;

3)在(2)的條件下,點(diǎn)Q為拋物線的頂點(diǎn),點(diǎn)P為射線AD上的一個(gè)動(dòng)點(diǎn),且點(diǎn)P的橫坐標(biāo)為t,過點(diǎn)Px軸的垂線l,垂足為E,點(diǎn)P從點(diǎn)A出發(fā)沿AD方向運(yùn)動(dòng),直線l隨之運(yùn)動(dòng),當(dāng)﹣2t1時(shí),直線l將四邊形ABCQ分割成左右兩部分,設(shè)在直線l左側(cè)部分的面積為S,求S關(guān)于t的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,弦于點(diǎn);點(diǎn)延長(zhǎng)線上一點(diǎn),

1)求證:的切線;

2)取的中點(diǎn),連接,若的半徑為2,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某體育老師統(tǒng)計(jì)了七年級(jí)甲、乙兩個(gè)班女生的身高,并繪制了以下不完整的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)圖中信息,解決下列問題:

1)兩個(gè)班共有女生多少人?

2)將頻數(shù)分布直方圖補(bǔ)充完整;

3)求扇形統(tǒng)計(jì)圖中部分所對(duì)應(yīng)的扇形圓心角度數(shù);

4)身高在5人中,甲班有3人,乙班有2人,現(xiàn)從中隨機(jī)抽取兩人補(bǔ)充到學(xué)校國旗隊(duì).請(qǐng)用列表法或畫樹狀圖法,求這兩人來自同一班級(jí)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)在藝術(shù)節(jié)期間向全校學(xué)生征集書畫作品,美術(shù)王老師從全校隨機(jī)抽取了四個(gè)班級(jí)記作A、B、CD,對(duì)征集到的作品的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了如下兩幅不完整的統(tǒng)計(jì)圖.

1)王老師抽查的四個(gè)班級(jí)共征集到作品多少件?

2)請(qǐng)把圖2的條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)若全校參展作品中有五名同學(xué)獲得一等獎(jiǎng),其中有三名男生、二名女生.現(xiàn)在要在其中抽兩名同學(xué)去參加學(xué)校總結(jié)表彰座談會(huì),請(qǐng)用畫樹狀圖或列表的方法求恰好抽中一名男生一名女生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案