【題目】近年來,共享單車服務的推出(如圖1),極大的方便了城市公民綠色出行,圖2是某品牌某型號單車的車架新投放時的示意圖(車輪半徑約為30cm),其中BC∥直線l,BCE=71°,CE=54cm.

(1)求單車車座E到地面的高度;(結果精確到1cm)

(2)根據(jù)經(jīng)驗,當車座ECB的距離調(diào)整至等于人體胯高(腿長)的0.85時,坐騎比較舒適.小明的胯高為70cm,現(xiàn)將車座E調(diào)整至座椅舒適高度位置E′,求EE′的長.(結果精確到0.1cm)

(參考數(shù)據(jù):sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)

【答案】(1)81cm;(2)8.6cm;

【解析】

1)作EMBC于點M,EM=ECsinBCE可得答案;

2)作EHBC于點H,先根據(jù)EC=求得EC的長度,再根據(jù)EE′=CE′﹣CE可得答案

1)如圖1,過點EEMBC于點M

由題意知∠BCE=71°、EC=54,EM=ECsinBCE=54sin71°51.3,則單車車座E到地面的高度為51.3+3081cm

2)如圖2所示,過點EEHBC于點H

由題意知EH=70×0.85=59.5EC==62.6,EE′=CE′﹣CE=62.654=8.6cm).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點A(﹣3,﹣3).

(1)求正比例函數(shù)和反比例函數(shù)的表達式;

(2)把直線OA向上平移后與反比例函數(shù)的圖象交于點B(﹣6,m),與x軸交于點C,求m的值和直線BC的表達式;

(3)在(2)的條件下,直線BCy軸交于點D,求以點A,B,D為頂點的三角形的面積;

(4)在(3)的條件下,點A,B,D在二次函數(shù)的圖象上,試判斷該二次函數(shù)在第三象限內(nèi)的圖象上是否存在一點E,使四邊形OECD的面積S1與四邊形OABD的面積S滿足:S1=S?若存在,求點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28 m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設AB=x m.若在P處有一棵樹與墻CD,AD的距離分別是15 m6 m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細),則花園面積S的最大值為(

A. 196 B. 195 C. 132 D. 14

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一次函數(shù)y=mx+4m﹣2.

(1)若這個函數(shù)的圖象經(jīng)過原點,求m的值;

(2)若這個函數(shù)的圖象不過第四象限,求m的取值范圍;

(3)不論m取何實數(shù)這個函數(shù)的圖象都過定點,試求這個定點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰ABC中,AB=AC,∠ACB=72°,

1)若BDACD,求∠ABD的度數(shù);

2)若CE平分∠ACB,求證:AE=BC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=﹣x2+bx+c的圖象與x軸交于點A(﹣10),B(2,0),與y軸相交于點C

1求二次函數(shù)的解析式;

2若點E是第一象限的拋物線上的一個動點,當四邊形ABEC的面積最大時,求點E的坐標,并求出四邊形ABEC的最大面積;

3若點M在拋物線上,且在y軸的右側.⊙My軸相切,切點為D.以CD,M為頂點的三角形與△AOC相似,請直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算下列各題

(1)

(2)(—3)2+(—3)×(+3)

(3)

(4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中放置一菱形OABC,已知ABC=60°,OA=1.現(xiàn)將菱形OABC沿x軸的正方向無滑動翻轉,每次翻轉60°,連續(xù)翻轉2018次,點B的落點依次為B1,B2,B3,B4,…,則B2018的坐標為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC,AC=BC,ACB=90,點DBC的延長線上,連接AD,過BBEAD,垂足為E,交AC于點F,連接CE.

(1)求證:BCF≌△ACD.

(2)猜想∠BEC的度數(shù),并說明理由;

查看答案和解析>>

同步練習冊答案