【題目】如圖,在△ABC中,∠BAC=90°,點(diǎn)E在BC邊上,且CA=CE,過(guò)A,C,E三點(diǎn)的⊙O交AB于另一點(diǎn)F,作直徑AD,連結(jié)DE并延長(zhǎng)交AB于點(diǎn)G,連結(jié)CD,CF.
(1)求證:四邊形DCFG是平行四邊形;(2)當(dāng)BE=4,CD=AB時(shí),求⊙O的直徑長(zhǎng).
【答案】(1)見(jiàn)解析;(2)的直徑長(zhǎng)為.
【解析】
(1)連接AE,由∠BAC=90°,得到CF是⊙O的直徑,根據(jù)圓周角定理得到∠AED=90°,即GD⊥AE,推出CF∥DG,推出AB∥CD,于是得到結(jié)論;
(2)設(shè)CD=3x,AB=8x,得到CD=FG=3x,于是得到AF=CD=3x,求得BG=8x3x3x=2x,求得BC=6+4=10,根據(jù)勾股定理得到AB=8=8x,求得x=1,在Rt△ACF中,根據(jù)勾股定理即可得到結(jié)論.
解:(1)連結(jié),
∵,∴為的直徑.
∵,∴.
∵為的直徑,∴,
即GD⊥AE,
∴CF∥DG,
∵AD是⊙O的直徑,
∴∠ACD=90°,
∴,
∴,
∴四邊形為平行四邊形.
(2)由,可設(shè),
∴.
∵,
∴,
∴.
∵,
∴.
又∵,
∴,
∴,
∴,
∴.
在中,,
∴,即的直徑長(zhǎng)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某鄉(xiāng)鎮(zhèn)在農(nóng)業(yè)產(chǎn)業(yè)合作化銷(xiāo)售中,其中一農(nóng)產(chǎn)品經(jīng)分析發(fā)現(xiàn)月銷(xiāo)售量y(萬(wàn)件)與月份x(月)的關(guān)系為:,每件產(chǎn)品的利潤(rùn)z(元)與月份x(月)的關(guān)系如下表:
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
z | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
(1)請(qǐng)你根據(jù)表格求出每件產(chǎn)品利潤(rùn)(元)與月份x(月)的關(guān)系式;
(2)若月利潤(rùn)w(萬(wàn)元)=當(dāng)月銷(xiāo)售量y(萬(wàn)件)×當(dāng)月每件產(chǎn)品的利潤(rùn)z(元),求月利潤(rùn)(萬(wàn)元)與月份x(月)的關(guān)系式;
(3)當(dāng)x為何值時(shí),月利潤(rùn)w有最大值,最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過(guò)市場(chǎng)調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價(jià)與銷(xiāo)售量的相關(guān)信息如下表:
時(shí)間x(天) | 1≤x<50 | 50≤x≤90 |
售價(jià)(元/件) | x+40 | 90 |
每天銷(xiāo)量(件) | 200-2x |
已知該商品的進(jìn)價(jià)為每件30元,設(shè)銷(xiāo)售該商品的每天利潤(rùn)為y元[
(1)求出y與x的函數(shù)關(guān)系式;
(2)問(wèn)銷(xiāo)售該商品第幾天時(shí),當(dāng)天銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)是多少?
(3)該商品在銷(xiāo)售過(guò)程中,共有多少天每天銷(xiāo)售利潤(rùn)不低于4800元?請(qǐng)直接寫(xiě)出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的盒子中裝有大小和形狀相同的3個(gè)紅球和2個(gè)白球,把它們充分?jǐn)噭颍?/span>
(1)“從中任意抽取1個(gè)球不是紅球就是白球”是 事件,“從中任意抽取1個(gè)球是黑球”是 事件;
(2)從中任意抽取1個(gè)球恰好是紅球的概率是 ;
(3)學(xué)校決定在甲、乙兩名同學(xué)中選取一名作為學(xué)生代表發(fā)言,制定如下規(guī)則:從盒子中任取兩個(gè)球,若兩球同色,則選甲;若兩球異色,則選乙.你認(rèn)為這個(gè)規(guī)則公平嗎?請(qǐng)用列表法或畫(huà)樹(shù)狀圖法加以說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】車(chē)間有20名工人,某天他們生產(chǎn)的零件個(gè)數(shù)統(tǒng)計(jì)如下表.
車(chē)間20名工人某一天生產(chǎn)的零件個(gè)數(shù)統(tǒng)計(jì)表
生產(chǎn)零件的個(gè)數(shù)(個(gè)) | 9 | 10 | 11 | 12 | 13 | 15 | 16 | 19 | 20 |
工人人數(shù)(人) | 1 | 1 | 6 | 4 | 2 | 2 | 2 | 1 | 1 |
(1)求這一天20名工人生產(chǎn)零件的平均個(gè)數(shù);
(2)為了提高大多數(shù)工人的積極性,管理者準(zhǔn)備實(shí)行“每天定額生產(chǎn),超產(chǎn)有獎(jiǎng)”的措施.如果你是管理者,從平均數(shù)、中位數(shù)、眾數(shù)的角度進(jìn)行分析,你將如何確定這個(gè)“定額”?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)軸于點(diǎn)(1,0),直線(xiàn)軸于點(diǎn)(2,0),直線(xiàn)軸于點(diǎn)(3,0),…,直線(xiàn)軸于點(diǎn)(n,0)。函數(shù)的圖象與直線(xiàn)分別交于點(diǎn);函數(shù)的圖象與直線(xiàn)分別交于點(diǎn)。如果的面積記作,四邊形的面積記作,四邊形的面積記作,…,四邊形的面積記作,那么_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,∠BAC=120°,AB=AC=2 .D為BC邊一點(diǎn),且BD:DC=1:2.以D為一個(gè)點(diǎn)作等邊△DEF,且DE=DC連接AE,將等邊△DEF繞點(diǎn)D旋轉(zhuǎn)一周,在整個(gè)旋轉(zhuǎn)過(guò)程中,當(dāng)AE取得最大值時(shí)AF的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于點(diǎn)O,點(diǎn)D、E分別在邊AC、BC上,且AD=CE,連結(jié)DE交CO于點(diǎn)P,給出以下結(jié)論:
①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,則四邊形CEOD的面積為;④,其中所有正確結(jié)論的序號(hào)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC=5,BC=8,若△ABC沿射線(xiàn)BC方向平移m個(gè)單位得到△DEF,頂點(diǎn)A,B,C分別與D,E,F對(duì)應(yīng),若以點(diǎn)A,D,E為頂點(diǎn)的三角形是等腰三角形,則m的值是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com