【題目】如圖,□ABCD的兩個頂點B,D都在拋物線y=x2+bx+c上,且OB=OC,AB=5,tan∠ACB=.
(1)求拋物線的解析式;
(2)在拋物線上是否存在點E,使以A,C,D,E為頂點的四邊形是菱形?若存在,請求出點E的坐標(biāo);若不存在,請說明理由.
(3)動點P從點A出發(fā)向點D運動,同時動點Q從點C出發(fā)向點A運動,運動速度都是每秒1個單位長度,當(dāng)一個點到達終點時另一個點也停止運動,運動時間為t(秒).當(dāng)t為何值時,△APQ是直角三角形?
【答案】(1)y=x2+x+5;(2)存在點E的坐標(biāo)為(4,6)(3)或.
【解析】試題分析:(1)根據(jù)平行四邊形的性質(zhì),求出A、B、C、D坐標(biāo),然后用待定系數(shù)法求出函數(shù)的解析式;
(2)根據(jù)平行四邊形的性質(zhì)和菱形的判定,求出E點的坐標(biāo),然后判斷其是否在函數(shù)的圖像上即可;
(3)當(dāng)△APQ是直角三角形時,分為∠APQ=90°或∠AQP=90°兩種情況,通過解直角三角形求解即可.
試題解析:解:(1) ∵OB=OC,OA⊥BC,AB=5,∴AB= AC=5.
∴tan∠ACB==,∴.
由勾股定理,得OA2+OC2=AC2, ∴()2+OC2=52,解得OC=±4(負值舍去) .
∴,OB=OC=4,AD=BC=8.
∴A(0,3),B(-4,0) ,C(4,0) ,D(8,3) .
∴
解之得
∴拋物線的解析式為y=x2+x+5.
(2)存在.
∵四邊形ABCD為平行四邊形,∴AC=AB= CD.
又∵AD≠CD,
∴當(dāng)以A,C,D,E為頂點的四邊形是菱形時,AC=CD=DE=AE
由對稱性可得,此時點E的坐標(biāo)為(4,6)
當(dāng)x=4時,y=x2+x+5=6,所以點(4,6)在拋物線y=x2+x+5上.
∴存在點E的坐標(biāo)為(4,6)
(3) ∵四邊形ABCD為平行四邊形,∴AD∥BC,∴∠DAC=∠ACB<90°.
∴當(dāng)△APQ是直角三角形時,∠APQ=90°或∠AQP=90°.
∵,∴.
由題意可知AP=t,AQ=5-t,0≤t≤5.
當(dāng)∠APQ=90°時, ,∴,解得.
當(dāng)∠AQP=90°時, ,∴,解得.
∵,
∴或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一塊直角三角形木板,它的一條直角邊AB長1.5m,面積為1.5m2.甲、乙兩位木匠分別按圖①、②把它加工成一個正方形桌面.請說明哪個正方形面積較大(加工損耗不計).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,AC為弦,OD∥BC,交AC于D,BC=4cm.
(1)求證:AC⊥OD;
(2)求OD的長;
(3)若2sinA﹣1=0,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)國家“自主創(chuàng)業(yè)”的號召,某大學(xué)畢業(yè)生開辦了一個裝飾品商店,采購了一種今年剛上市的飾品進行了30天的試銷,購進價格為20元/件,銷售結(jié)束后,得知日銷售量P(件)與銷售時間x(天)之間的關(guān)系如圖(1)所示,銷售價格Q(元/件)與銷售時間x(天)之間的關(guān)系如圖(2)所示.
(1)根據(jù)圖象直接寫出:日銷售量P(件)與銷售時間x(天)之間的函數(shù)關(guān)系式為 ;銷售單價
Q(元/件)與銷售時間x(天)的函數(shù)關(guān)系式為 .(不要求寫出自變量的取值范圍)
(2)寫出該商品的日銷售利潤W(元)和銷售時間x(天)之間的函數(shù)關(guān)系式;(不要求寫出自變量的取值范圍)
(3)請問在30天的試銷售中,哪一天的日銷售利潤最大?并求出這個最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著“一帶一路”的進一歩推進,我國瓷器(“china”)更為“一帶一路”沿踐人民所推崇,一外國商戶準(zhǔn)這一商機,向我國一瓷器經(jīng)銷商咨詢工藝品茶具,得到如下信息:
(1)每個茶壺的批發(fā)價比每個茶杯多120元;
(2)一套茶具包括一個茶壺與四個茶杯;
(3)4套茶具的批發(fā)價為1280元.
根據(jù)以上僖息:
(1)求每個茶壺與每個茶杯的批發(fā)價;
(2)若該商戶購進茶杯的數(shù)量是茶壺數(shù)量的5倍還多18個,并且茶壺和茶杯的總數(shù)不超過320個,該商戶計劃將一半的茶具按每套500元成套銷售,其余按每個茶壺300元,每個茶杯80元零售.沒核商戶購進茶壺m個.
①試用含m的關(guān)系式表示出該商戶計劃獲取的利潤;
②請幫助他設(shè)計一種獲取利潤最大的方案,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“愛滿揚州”慈善一日捐活動中,學(xué)校團總支為了了解本校學(xué)生的捐款情況,隨機抽取了50名學(xué)生的捐款數(shù)進行了統(tǒng)計,并繪制成統(tǒng)計圖.
(1)這50名同學(xué)捐款的眾數(shù)為 元,中位數(shù)為 元;
(2)求這50名同學(xué)捐款的平均數(shù);
(3)該校共有600名學(xué)生參與捐款,請估計該校學(xué)生的捐款總數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)一張長為30cm,寬20cm的矩形紙片,如圖1所示,將這張紙片的四個角各剪去一個邊長相同的正方形后,把剩余部分折成一個無蓋的長方體紙盒,如圖1所示,如果折成的長方體紙盒的底面積為264cm2,求剪掉的正方形紙片的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是用4個全等的直角三角形與1個小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4,若用,表示直角三角形的兩直角邊(),下列四個說法:
①,②,③,④.
其中說法正確的是 …………………………………………………………( )
A. ①② B. ①②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料并解決有關(guān)問題:
我們知道,|m|= .現(xiàn)在我們可以用這一結(jié)論來化簡含有絕對值的代
數(shù)式,如化簡代數(shù)式|m+1|+|m﹣2|時,可令 m+1=0 和 m﹣2=0,分別求得 m=﹣1,m=2(稱﹣1,2 分別為|m+1|與|m﹣2|的零點值).在實數(shù)范圍內(nèi), 零點值 m=﹣1 和 m=2 可將全體實數(shù)分成不重復(fù)且不遺漏的如下 3 種情況:
(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.從而化簡代數(shù)式|m+1|+|m﹣2| 可分以下 3 種情況:
(1)當(dāng) m<﹣1 時,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;
(2)當(dāng)﹣1≤m<2 時,原式=m+1﹣(m﹣2)=3;
(3)當(dāng) m≥2 時,原式=m+1+m﹣2=2m﹣1.
綜上討論,原式=
通過以上閱讀,請你解決以下問題:
(1)分別求出|x﹣5|和|x﹣4|的零點值;
(2)化簡代數(shù)式|x﹣5|+|x﹣4|;
(3)求代數(shù)式|x﹣5|+|x﹣4|的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com