如圖所示,在x軸的正半軸上依次截取OA1=A1A2=A2A3=A3A4…=A2n-1A2n=1,過A1、A3、A5…A2n-1分別作x軸的垂線與反比例函數(shù)y=
2
x
的圖象交于點B1、B3、B5…B2n-1,與反比例函數(shù)y=
4
x
的圖象交于點C1、C3、C5、…C2n-1,并設(shè)△OB1C1與△B1C1A2合并成的四邊形的面積為S1,△A2B2C3與△B2C3A4合并成的四邊形的面積為S2…,以此類推,△A2n-2BnCn與△BnCnA2n合并成的四邊形的面積為Sn,則S1=
2
2
1
s1
+
1
s2
+
1
s3
+…+
1
sn
=
n2
2
n2
2
.(n為正整數(shù)).
分析:首先根據(jù)已知得出OA1•B1A1=2,OA1•C1A1=4,進(jìn)而求出S1=
1
2
×2OA1•C1A1-
1
2
×2OA1•B1A1=2,即可得出S2=
2
3
,S3=
2
5
,Sn=
2
2n-1
,求出答案即可.
解答:解:∵在x軸的正半軸上依次截取OA1=A1A2=A2A3=A3A4…=A2n-1A2n=1,過A1、A3、A5…A2n-1分別作x軸的垂線與反比例函數(shù)y=
2
x
的圖象交于點B1、B3、B5…B2n-1,與反比例函數(shù)y=
4
x
的圖象交于點C1、C3、C5、…C2n-1,
∴OA1•B1A1=2,OA1•C1A1=4,
∴△OB1C1與△B1C1A2合并成的四邊形的面積為S1=
1
2
×2OA1•C1A1-
1
2
×2OA1•B1A1=2,
同理可得出:OA3•C3A3=4,OA3•B3A3=2,
∴C3A3=
4
3
,B3A3=
2
3
,
∴△A2B2C3與△B2C3A4合并成的四邊形的面積為S2=
1
2
×2A2A3•C3A3-
1
2
×2A2A3•B3A3=
2
3
,
可得出:S3=
2
5
,
∴Sn=
2
2n-1
,
1
s1
+
1
s2
+
1
s3
+…+
1
sn
=
1
2
+
3
2
+
5
2
+…+
2n-1
2
=
1+3+5+…+(2n-1)
2
=
n2
2
(n為正整數(shù)).
故答案為:2,
n2
2
點評:此題主要考查了反比例函數(shù)的綜合應(yīng)用以及三角形面積求法,根據(jù)已知得出面積S的變化規(guī)律進(jìn)而得出是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黑龍江)如圖所示,在x軸的正半軸上依次截取OA1=A1A2=A2A3=A3A4=A4A5…,過A1、A2、A3、A4、A5…分別作x軸的垂線與反比例函數(shù)y=
4
x
的圖象交于點P1、P2、P3、P4、P5…,并設(shè)△OA1P1、△A1A2P2、△A2A3P3…面積分別為S1、S2、S3…,按此作法進(jìn)行下去,則Sn的值為
2
n
2
n
(n為正整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測試卷-反比例函數(shù)的應(yīng)用(帶解析) 題型:填空題

如圖所示,在x軸的正半軸上依次截取OA1=A1A2=A2A3=A3A4=A4A5…,過A1、A2、A3、A4、A5…分別作x軸的垂線與反比例函數(shù)y=的圖象交于點P1、P2、P3、P4、P5…,并設(shè)△OA1P1、△A1A2P2、△A2A3P3…面積分別為S1、S2、S3…,按此作法進(jìn)行下去,則Sn的值為  (n為正整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測試卷-反比例函數(shù)的應(yīng)用(解析版) 題型:填空題

如圖所示,在x軸的正半軸上依次截取OA1=A1A2=A2A3=A3A4=A4A5…,過A1、A2、A3、A4、A5…分別作x軸的垂線與反比例函數(shù)y=的圖象交于點P1、P2、P3、P4、P5…,并設(shè)△OA1P1、△A1A2P2、△A2A3P3…面積分別為S1、S2、S3…,按此作法進(jìn)行下去,則Sn的值為  (n為正整數(shù)).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年黑龍江省龍東地區(qū)中考數(shù)學(xué)試卷(解析版) 題型:填空題

如圖所示,在x軸的正半軸上依次截取OA1=A1A2=A2A3=A3A4=A4A5…,過A1、A2、A3、A4、A5…分別作x軸的垂線與反比例函數(shù)y=的圖象交于點P1、P2、P3、P4、P5…,并設(shè)△OA1P1、△A1A2P2、△A2A3P3…面積分別為S1、S2、S3…,按此作法進(jìn)行下去,則Sn的值為    (n為正整數(shù)).

查看答案和解析>>

同步練習(xí)冊答案