精英家教網 > 初中數學 > 題目詳情

如圖所示,在x軸的正半軸上依次截取OA1=A1A2=A2A3=A3A4=A4A5…,過A1、A2、A3、A4、A5…分別作x軸的垂線與反比例函數y=的圖象交于點P1、P2、P3、P4、P5…,并設△OA1P1、△A1A2P2、△A2A3P3…面積分別為S1、S2、S3…,按此作法進行下去,則Sn的值為  (n為正整數).

解析試題分析:根據反比例函數y=中k的幾何意義再結合圖象即可解答.
解:因為過雙曲線上任意一點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S是個定值,S=|k|=2.
所以S1=2,S2= S1=1,S3=S1=,S4=S1=,S5=S1=
依此類推:Sn的值為
故答案是:
考點:反比例函數綜合題.
點評:主要考查了反比例函數y=中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經?疾榈囊粋知識點;這里體現了數形結合的思想,做此類題一定要正確理解k的幾何意義.圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關系即S=|k|.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•黑龍江)如圖所示,在x軸的正半軸上依次截取OA1=A1A2=A2A3=A3A4=A4A5…,過A1、A2、A3、A4、A5…分別作x軸的垂線與反比例函數y=
4
x
的圖象交于點P1、P2、P3、P4、P5…,并設△OA1P1、△A1A2P2、△A2A3P3…面積分別為S1、S2、S3…,按此作法進行下去,則Sn的值為
2
n
2
n
(n為正整數).

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖所示,在x軸的正半軸上依次截取OA1=A1A2=A2A3=A3A4…=A2n-1A2n=1,過A1、A3、A5…A2n-1分別作x軸的垂線與反比例函數y=
2
x
的圖象交于點B1、B3、B5…B2n-1,與反比例函數y=
4
x
的圖象交于點C1、C3、C5、…C2n-1,并設△OB1C1與△B1C1A2合并成的四邊形的面積為S1,△A2B2C3與△B2C3A4合并成的四邊形的面積為S2…,以此類推,△A2n-2BnCn與△BnCnA2n合并成的四邊形的面積為Sn,則S1=
2
2
1
s1
+
1
s2
+
1
s3
+…+
1
sn
=
n2
2
n2
2
.(n為正整數).

查看答案和解析>>

科目:初中數學 來源:2013年初中數學單元提優(yōu)測試卷-反比例函數的應用(解析版) 題型:填空題

如圖所示,在x軸的正半軸上依次截取OA1=A1A2=A2A3=A3A4=A4A5…,過A1、A2、A3、A4、A5…分別作x軸的垂線與反比例函數y=的圖象交于點P1、P2、P3、P4、P5…,并設△OA1P1、△A1A2P2、△A2A3P3…面積分別為S1、S2、S3…,按此作法進行下去,則Sn的值為  (n為正整數).

 

查看答案和解析>>

科目:初中數學 來源:2012年黑龍江省龍東地區(qū)中考數學試卷(解析版) 題型:填空題

如圖所示,在x軸的正半軸上依次截取OA1=A1A2=A2A3=A3A4=A4A5…,過A1、A2、A3、A4、A5…分別作x軸的垂線與反比例函數y=的圖象交于點P1、P2、P3、P4、P5…,并設△OA1P1、△A1A2P2、△A2A3P3…面積分別為S1、S2、S3…,按此作法進行下去,則Sn的值為    (n為正整數).

查看答案和解析>>

同步練習冊答案