【題目】分解因式:-4xy2+x=______

【答案】-x2y+1)(2y-1

【解析】

直接提取公因式-x,再利用平方差公式分解因式即可.

解:原式=-x4y2-1=-x2y+1)(2y-1).

故答案為:-x2y+1)(2y-1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】零上13℃記作+13℃,零下2℃可記作(
A.2
B.﹣2
C.2℃
D.﹣2℃

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知O的半徑為6A為線段OP的中點(diǎn),當(dāng)OP的長度為10時(shí),點(diǎn)AO的位置關(guān)系為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某家電銷售商城電冰箱的銷售價(jià)為每臺2100元,空調(diào)的銷售價(jià)為每臺1750元,每臺電冰箱的進(jìn)價(jià)比每臺空調(diào)的進(jìn)價(jià)多400元,商城用80000元購進(jìn)電冰箱的數(shù)量與用64000元購進(jìn)空調(diào)的數(shù)量相等.

1)求每臺電冰箱與空調(diào)的進(jìn)價(jià)分別是多少?

2)現(xiàn)在商城準(zhǔn)備一次購進(jìn)這兩種家電共100臺,設(shè)購進(jìn)電冰箱x臺,這100臺家電的銷售總利潤為y元,要求購進(jìn)空調(diào)數(shù)量不超過電冰箱數(shù)量的2倍,總利潤不低于13000元,請分析合理的方案共有多少種?并確定獲利最大的方案以及最大利潤;

3)實(shí)際進(jìn)貨時(shí),廠家對電冰箱出廠價(jià)下調(diào)k0k100)元,若商店保持這兩種家電的售價(jià)不變,請你根據(jù)以上信息及(2)問中條件,設(shè)計(jì)出使這100臺家電銷售總利潤最大的進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)為了綠化環(huán)境,計(jì)劃分兩次購進(jìn)A、B兩種花草,第一次分別購進(jìn)A、B兩種花草30棵和15棵,共花費(fèi)675元;第二次分別購進(jìn)AB兩種花草12棵和5棵.兩次共花費(fèi)940元(兩次購進(jìn)的A、B兩種花草價(jià)格均分別相同).

1A、B兩種花草每棵的價(jià)格分別是多少元?

2)若購買AB兩種花草共31棵,且B種花草的數(shù)量少于A種花草的數(shù)量的2倍,請你給出一種費(fèi)用最省的方案,并求出該方案所需費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】0是一個(gè)( 。

A. 負(fù)整數(shù) B. 正分?jǐn)?shù) C. 非負(fù)整數(shù) D. 正整數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各數(shù)中比﹣12的數(shù)是( 。

A. ﹣1 B. ﹣2 C. 1 D. ﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某家具商場計(jì)劃購進(jìn)某種餐桌、餐椅進(jìn)行銷售,有關(guān)信息如表:

已知用600元購進(jìn)的餐桌數(shù)量與用160元購進(jìn)的餐椅數(shù)量相同.

(1)求表中a的值;

(2)若該商場購進(jìn)餐椅的數(shù)量是餐桌數(shù)量的5倍還多20張,且餐桌和餐椅的總數(shù)量不超過200張.該商場計(jì)劃將一半的餐桌成套(一張餐桌和四張餐椅配成一套)銷售,其余餐桌、餐椅以零售方式銷售.請問怎樣進(jìn)貨,才能獲得最大利潤?最大利潤是多少?

(3)由于原材料價(jià)格上漲,每張餐桌和餐椅的進(jìn)價(jià)都上漲了10元,按照(2)中獲得最大利潤的方案購進(jìn)餐桌和餐椅,在調(diào)整成套銷售量而不改變銷售價(jià)格的情況下,實(shí)際全部售出后,所得利潤比(2)中的最大利潤少了2250元.請問本次成套的銷售量為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2﹣2x+m=0有兩個(gè)相等的實(shí)數(shù)根,則m的值是

查看答案和解析>>

同步練習(xí)冊答案