【題目】如圖1,長方形OABC的邊OAOC分別在x軸、y軸上,B點坐標是(8,4),將AOC沿對角線AC翻折得ADCADBC相交于點E

1)求證:CDE≌△ABE

2)求E點坐標;

3)如圖2,動點P從點A出發(fā),沿著折線ABCO運動(到點O停止),是否存在點P,使得POA的面積等于ACE的面積,若存在,直接寫出點P坐標,若不存在,說明理由.

【答案】(1)見解析;(2)E54);(3)存在,滿足條件的點P的坐標為(8,)或(0),理由見解析

【解析】

1)用角角邊定理即可證明.
2)設(shè)CE=AE=n,則BE=8-n,利用勾股定理即可求解.
3)構(gòu)建方程確定點P的縱坐標即可解決問題.

解:(1)證明:∵四邊形OABC為矩形,

ABOC,∠B=∠AOC90°,

CDOCAB,∠D=∠AOC=∠B,

又∠CED=∠ABE

∴△CDE≌△ABEAAS),

CEAE;

2)∵B84),即AB4BC8

∴設(shè)CEAEn,則BE8n

可得(8n2+42n2,

解得:n5,

E5,4);

3)∵SACECEAB×5×410,

SPOAOAyP10,

×8×yP10,

yP,

∴滿足條件的點P的坐標為(8,)或(0,).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的對角線,相交于點,,上的兩點,并且,連接,.

1)求證;

2)若,連接,,判斷四邊形的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一水池的容積V(公升)與注入水的時間t(分鐘)之間開始是一次函數(shù)關(guān)系,表中記錄的是這段時間注入水的時間與水池容積部分對應值.

注入水的時間t(分鐘)

0

10

25

水池的容積V(公升)

100

300

600

(1)求這段時間時V關(guān)于t的函數(shù)關(guān)系式(不需要寫出函數(shù)的定義域);

(2)t25分鐘開始,每分鐘注入的水量發(fā)生變化了,到t27分鐘時,水池的容積為726公升,如果這兩分鐘中的每分鐘注入的水量增長的百分率相同,求這個百分率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學家吳文俊院士非常重視古代數(shù)學家賈憲提出的從長方形對角線上任一點作兩條分別平行于兩鄰邊的直線,則所容兩長方形面積相等(如圖所示)這一推論,他從這一推論出發(fā),利用出入相補原理復原了《海島算經(jīng)》九題古證,根據(jù)圖形可知他得出的這個推論指(

A. S矩形ABMNS矩形MNDCB. S矩形EBMFS矩形AEFN

C. S矩形AEFNS矩形MNDCD. S矩形EBMFS矩形NFGD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,A,B兩個頂點在x軸的上方,點C的坐標是(-1,0).以點C為位似中心,在x軸的下方作△ABC的位似圖形,并把△ABC的邊長放大到原來的2倍,記所得的像是△A′B′C.設(shè)點B的對應點B′的橫坐標是a,則點B的橫坐標是( )

A. - B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班50名學生期末考試數(shù)學成績(單位:分)的頻率分布條形圖如圖所示,其中數(shù)據(jù)不在分點上,對圖中提供的信息作出如下的判斷:

(1)成績在49.5分~59.5分段的人數(shù)與89.5分~100分段的人數(shù)相等;

(2)成績在79.5~89.5分段的人數(shù)占30%;

(3)成績在79.5分以上的學生有20人;

(4)本次考試成績的中位數(shù)落在69.5~79.5分段內(nèi).

其中正確的判斷有(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線x軸、y軸分別交于點A和點B,點C在線段AB上,點Dy軸的負半軸上,C、D兩點到x軸的距離均為2

1)點C的坐標為    ,點D的坐標為     ;

2)點P為線段OA上的一動點,當PC+PD最小時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,ABC的三個頂點坐標分別為A1,4),B4,2),C3,5)(每個方格的邊長均為1個單位長度)

1)請畫出A1B1C1,使A1B1C1ABC關(guān)于原點對稱;

2)將ABC繞點O逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的A2B2C2,并直接寫出線段OB旋轉(zhuǎn)到OB2掃過圖形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC.則下列結(jié)論:

①abc<0;②>0;③ac﹣b+1=0;④OAOB=﹣

其中正確結(jié)論的個數(shù)是( )

A.4 B.3 C.2 D.1

查看答案和解析>>

同步練習冊答案