【題目】按圖填空, 并注明理由
已知: 如圖, ∠1=∠2, ∠3=∠E. 求證: AD∥BE
證明: ∵∠1 = ∠2 (已知)
∴ ∥ ( )
∴ ∠E = ∠ ( )
又∵ ∠E = ∠3 ( 已知 )
∴ ∠3 = ∠ ( 等量代換 )
∴ ∥ ( 內(nèi)錯(cuò)角相等,兩直線平行 )
【答案】EC;DB;內(nèi)錯(cuò)角相等,兩直線平行;兩直線平行,內(nèi)錯(cuò)角相等;4;等量代換;內(nèi)錯(cuò)角相等,兩直線平行
【解析】試題分析:首先根據(jù)∠1=∠2可得BD∥CE,再根據(jù)平行線的性質(zhì)可得∠E=∠4,然后可證出∠3=∠4,再根據(jù)內(nèi)錯(cuò)角相等,兩直線平行可得AD∥BE.
試題解析:∵∠1=∠2(已知)
∴EC∥DB
(內(nèi)錯(cuò)角相等,兩直線平行)
∴∠E=∠4
(兩直線平行,內(nèi)錯(cuò)角相等)
又∵∠E=∠3(已知)
∴∠3=∠4 (等量代換)
∴AD∥BE.
(內(nèi)錯(cuò)角相等,兩直線平行)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先閱讀下面的內(nèi)容,再解決問題,
例題:若,求和的值.
解:∵
∴
∴ ∴
∴
問題(1)若△ABC的三邊長(zhǎng)都是正整數(shù),且滿足,請(qǐng)問△ABC是什么形狀?說(shuō)明理由.
(2)若,求的值.
(3)已知,則 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x+4與x軸、y軸分別交于A、B兩點(diǎn),點(diǎn)C在OB上,若將△ABC沿AC折疊,使點(diǎn)B恰好落在x軸上的點(diǎn)D處,則:
(1)線段AB的長(zhǎng)是 .
(2)點(diǎn)C的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD邊長(zhǎng)為3,點(diǎn)E在AB邊上且BE=1,點(diǎn)P,Q分別是邊BC,CD的動(dòng)點(diǎn)(均不與頂點(diǎn)重合),當(dāng)四邊形AEPQ的周長(zhǎng)取最小值時(shí),四邊形AEPQ的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)P(-20,a)與點(diǎn)Q(b,13)關(guān)于原點(diǎn)對(duì)稱,則a+b的值為()
A. 33 B. -33 C. -7 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:四邊形ABCD為平行四邊形,延長(zhǎng)AD至E,使DE=AD,連接EB,EC,DB.添加一個(gè)條件,不能使四邊形DBCE為矩形的是( )
A. AB=BE B. BE⊥CD C. ∠ADB=900 D. CE⊥DE
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com