【題目】解下列方程和方程組

1

2

3)解方程組:

【答案】1x=1;(2x=-2 ;(3.

【解析】

1)去括號、移項、合并同類項、系數(shù)化為1,依此即可求解;

2)去分母、去括號、移項、合并同類項、系數(shù)化為1,依此即可求解.

3)方程組的兩個方程中,如果同一個未知數(shù)的系數(shù)既不相等又不互為相反數(shù),就用適當(dāng)?shù)臄?shù)去乘方程的兩邊,使某一個未知數(shù)的系數(shù)相等或互為相反數(shù),再把兩個方程的兩邊分別相減或相加,進(jìn)而得到結(jié)論;

解:(17-23-x=32x-1),

7-6+2x=6x-3,

2x-6x=-3-7+6,

-4x=-4,

x=1

2

41-x=12x+12-33x-2),

4-4x=12x+12-9x+6

-4x-12x+9x=12+6-4,

-7x=14,

x=-2

3

整理得:

由①×2-×3,可得

4y--9y=39,

解得y=3,

y=3代入①,可得

3x+6=12,

解得x=2

故方程組的解為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一天,媽媽下班后從公司開車回家,途中想起忘了帶第二天早上開早會的一個文件夾,于是打電話讓辦公室王阿姨馬上從公司送來,同時媽媽也往回開,遇到王阿姨后停下說了幾句話,接著繼續(xù)開車回家.設(shè)媽媽從公司出發(fā)后所用時間為t,媽媽與家的距離為s.下面能反映st的函數(shù)關(guān)系的大致圖象是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)如圖,將□ABCD沿過點A的直線折疊,使點D落到AB邊上的點處,折痕CD邊于點E,連接BE

1)求證:四邊形是平行四邊形

2)若BE平分∠ABC,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ABCD中,AB4,BC7,點PBC邊上與點B不重合的動點,過點P的直線交CD的延長線于點R,交AD于點Q(Q與點D不重合),且∠RPC45°.設(shè)BPx,梯形ABPQ的面積為y,求yx之間的函數(shù)關(guān)系式,并求出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程組:①,比較適宜的方法是( )

A.①②用代入法,③④用加減法B.①③用代入法,②④用加減法

C.②③用代入法,①④用加減法D.②④用代入法,①③用加減法

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們約定:如果身高在選定標(biāo)準(zhǔn)的±2%范圍之內(nèi)都稱為普通身高.為了了解某校九年級男生中具有普遍身高的人數(shù),我們從該校九年級男生中隨機(jī)抽出10名男生,分別測量出他們的身高(單位:cm),收集并整理如下統(tǒng)計表:

1)計算這組數(shù)據(jù)的三個統(tǒng)計量:平均數(shù)、中位數(shù)、眾數(shù);

2)請你選擇其中一個統(tǒng)計量作為選定標(biāo)準(zhǔn),找出這10名男生中具有普遍身高是哪幾位男生?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校開展書香校園,誦讀經(jīng)典活動,隨機(jī)抽查了部分學(xué)生,對他們每天的課外閱讀時長進(jìn)行統(tǒng)計,并將結(jié)果分為四類:設(shè)每天閱讀時長為t分鐘,當(dāng)0t≤20時記為A類,當(dāng)20t≤40時記為B類,當(dāng)40t≤60時記為C類,當(dāng)t60時記為D類,收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,解答下列問題:

1)這次共抽取了 名學(xué)生進(jìn)行調(diào)查統(tǒng)計,扇形統(tǒng)計圖中的D類所對應(yīng)的扇形圓心角為 °;

2)將條形統(tǒng)計圖補(bǔ)充完整;

3)若該校共有2000名學(xué)生,請估計該校每天閱讀時長超過40分鐘的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點邊上的中點,、分別垂直、于點.求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10如圖,已知ABC為等邊三角形,點D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點F

1求證:ABE≌△CAD;2BFD的度數(shù)

查看答案和解析>>

同步練習(xí)冊答案