【題目】A(﹣3.5y1),B(﹣1y2)為二次函數(shù)y=﹣(x+22+h的圖象上的兩點(diǎn),則y1_____y2(填).

【答案】

【解析】

本題需先根據(jù)已知條件求出二次函數(shù)的圖象的對(duì)稱軸,再根據(jù)圖象上的點(diǎn)的橫坐標(biāo)距離對(duì)稱軸的遠(yuǎn)近來(lái)判斷縱坐標(biāo)的大。

∵二次函數(shù)y=﹣(x+22+h

∴該拋物線開(kāi)口向下,且對(duì)稱軸為x=﹣2

A(﹣3.5y1),B(﹣1,y2)在二次函數(shù)y=﹣(x+22+h的圖象上,

點(diǎn)(﹣3.5,y1)橫坐標(biāo)離對(duì)稱軸的距離大于點(diǎn)(﹣1,y2)橫坐標(biāo)離對(duì)稱軸的距離,

y1y2

故答案為:<.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校準(zhǔn)備開(kāi)展“陽(yáng)光體育活動(dòng)”,決定開(kāi)設(shè)以下體育活動(dòng)項(xiàng)目:足球、乒乓球、籃球和羽毛球,要求每位學(xué)生必須且只能選擇一項(xiàng),為了解選擇各種體育活動(dòng)項(xiàng)目的學(xué)生人數(shù),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將通過(guò)獲得的數(shù)據(jù)進(jìn)行整理,繪制出以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答問(wèn)題:

(1)這次活動(dòng)一共調(diào)查了多少名學(xué)生?

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)在扇形統(tǒng)計(jì)圖中,選擇籃球項(xiàng)目的人數(shù)所在扇形的圓心角等于多少度?

(4)若該學(xué)校有1500人,請(qǐng)你估計(jì)該學(xué)校選擇足球項(xiàng)目的學(xué)生人數(shù);

(5)九(1)班從參加乒乓球活動(dòng)的學(xué)生中挑選四名優(yōu)秀學(xué)生張杰、吳元、金賢、郝濤,隨機(jī)選取兩人為一組,另兩人為一組,進(jìn)行男子雙打?qū)褂?xùn)練,準(zhǔn)備參加縣乒乓球比賽.用樹(shù)狀圖或列表法求吳元與金賢恰好分在同一組的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,是真命題的為( )

A.銳角三角形都相似B.直角三角形都相似

C.等腰三角形都相似D.等邊三角形都相似

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,書(shū)桌上的一種新型臺(tái)歷和一塊主板AB、一個(gè)架板AC和環(huán)扣(不計(jì)寬度,記為點(diǎn)A)組成,其側(cè)面示意圖為△ABC,測(cè)得AC⊥BC,AB=5cm,AC=4cm,現(xiàn)為了書(shū)寫記事方便,須調(diào)整臺(tái)歷的擺放,移動(dòng)點(diǎn)C至C′,當(dāng)∠C′=30°時(shí),求移動(dòng)的距離即CC′的長(zhǎng)(或用計(jì)算器計(jì)算,結(jié)果取整數(shù),其中 =1.732, =4.583)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算題
(1)計(jì)算:
(2)(﹣a23﹣(﹣a32+2a5(﹣a)
(3)(2a+b)(2a-b)+3(2a-b) 2+(-3a)(4a-3b)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,⊙My軸相切于原點(diǎn)O,平行于x軸的直線交⊙MP、Q兩點(diǎn),點(diǎn)P在點(diǎn)Q的右邊,若P點(diǎn)的坐標(biāo)為(-1,2),則Q點(diǎn)的坐標(biāo)是

A. (-4,2) B. (-4.5,2) C. (-5,2) D. (-5.5,2 )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若 、 互為相反數(shù), 、 互為倒數(shù), 的絕對(duì)值為2.
(1)分別直接寫出 , , 的值;
(2)求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖16,以扇形OAB的頂點(diǎn)O為原點(diǎn),半徑OB所在的直線為x軸,建立平面直角坐標(biāo)系,點(diǎn)B的坐標(biāo)為(2,0),若拋物線y=+k與扇形OAB的邊界總有兩個(gè)公共點(diǎn),則實(shí)數(shù)k的取值范圍是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A和點(diǎn)B,其中點(diǎn)A的坐標(biāo)為(2,0),拋物線的對(duì)稱軸x=-1與拋物線交于點(diǎn)D,與直線BC交于點(diǎn)E.

(1)求拋物線的解析式;

(2)若點(diǎn)F是直線BC上方的拋物線上的一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)F使四邊形BOCF的面積最大,若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)平行于DE的一條動(dòng)直線l與直線BC相交于點(diǎn)P,與拋物線相交于點(diǎn)Q,若以D、E、P、Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案