已知直線y=x+4與x軸、y軸分別交于A、B兩點(diǎn),∠ABC=60°,BC與x軸交于C。
(1)求直線BC的解析式
(2)若動(dòng)點(diǎn)P從A點(diǎn)出發(fā)沿AC向點(diǎn)C運(yùn)動(dòng)(不與A、C重合),同時(shí)動(dòng)點(diǎn)Q從C點(diǎn)出發(fā)沿C-B-A向點(diǎn)A運(yùn)動(dòng)(不與C、A重合),動(dòng)點(diǎn)P的運(yùn)動(dòng)速度是每秒1個(gè)單位長度,動(dòng)點(diǎn)Q的運(yùn)動(dòng)速度是每秒2個(gè)單位長度.設(shè)△APQ的面積為S,P點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒,求S與t的函數(shù)關(guān)系式,并寫出自變量的取值范圍.
(3)在(2)的條件下,當(dāng)t=4秒時(shí),y軸上有一點(diǎn)M,平面內(nèi)是否存在一點(diǎn)N,使以A、Q、M、N為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)直接寫出N點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
( 1 )由已知得A點(diǎn)坐標(biāo)(-4﹐0),B點(diǎn)坐標(biāo)(0﹐4﹚
∵OA=4 OB=4
∴∠BAO=60º
∵∠ABC=60º
∴△ABC是等邊三角形
∵OC=OA=4
∴C點(diǎn)坐標(biāo)﹙4,0﹚
設(shè)直線BC解析式為y=kx﹢b
∴
∴直線BC的解析式為y=-
﹙2﹚當(dāng)P點(diǎn)在AO之間運(yùn)動(dòng)時(shí),作QH⊥x軸。
∴QH=t
∴S△APQ=AP·QH=t·t=t²(0<t≤4) 同理可得S△APQ=t·﹙8﹚=-﹙4≤t<8﹚
(3)存在,(4,0),(-4,8)(-4,-8)(-4,)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
在三只乒乓球上,分別寫有三個(gè)不同的正整數(shù)(用a、b、c表示),三只乒乓球除上面的數(shù)字不同外,其余均相同.將三只乒乓球放在一個(gè)盒子中,無放回的從中依次摸2只乒乓球,將球上面的數(shù)字相加求和.當(dāng)和為偶數(shù)時(shí),記為事件A;當(dāng)和為奇數(shù)時(shí),記為事件B.
(1) 設(shè)計(jì)一組a、b、c的值,使得事件A為必然發(fā)生的事件;
(2) 設(shè)計(jì)一組a、b、c的值,使得事件B發(fā)生的概率大于事件A發(fā)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
有一組數(shù)據(jù)3、5、7、a、4,如果它們的平均數(shù)是5,那么這組數(shù)據(jù)的方差是______________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知四邊形ABCD是平行四邊形,若點(diǎn)E、F分別在邊BC、AD上,連接AE、CF,請(qǐng)?jiān)購南铝腥齻(gè)備選條件中,選擇添加一個(gè)恰當(dāng)?shù)臈l件.使四邊形AECF是平行四邊形,并予以證明,
備選條件:AE=CF,BE=DF,∠AEB=∠CFD,
我選擇添加的條件是 .證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知,在□ABCD中,若∠A+∠C=200°,則∠B的度數(shù)是 ( )
A.100° B.160° C.80° D.60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
鄰邊不相等的平行四邊形紙片,剪去一個(gè)菱形,余下一個(gè)四邊形,稱為第一次操作;在余下的四邊形紙片中再剪去一個(gè)菱形,又余下一個(gè)四邊形,稱為第二次操作;……依此類推,若第n次操作余下的四邊形是菱形,則稱原平行四邊形為n階準(zhǔn)菱形.如圖1,□ABCD中,若AB=1,BC=2,則□ABCD為1階準(zhǔn)菱形.
(1)判斷與推理:
①鄰邊長分別為2和3的平行四邊形是 階準(zhǔn)菱形;
②小明為了剪去一個(gè)菱形,進(jìn)行如下操作:如圖2,把□ABCD沿BE折疊(點(diǎn)E在AD上),使點(diǎn)A落在BC邊上的點(diǎn)F,得到四邊形ABFE.請(qǐng)證明四邊形ABEF是菱形.
(2)操作、探究與計(jì)算:
①已知□ABCD是鄰邊長分別為1,a(a>1),且是3階準(zhǔn)菱形,請(qǐng)畫出□ABCD及裁剪線的示意圖,并在圖形下方寫出a的值;
②已知□ABCD的鄰邊長分別為a,b(a>b),滿足a=6b+r,b=5r(r>0),則□ABCD是 階準(zhǔn)菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
單元檢測后,學(xué)習(xí)小組長算出全組5位同學(xué)數(shù)學(xué)成績的平均分為M,如果把M當(dāng)成另一個(gè)
同學(xué)的分?jǐn)?shù),與原來的5個(gè)分?jǐn)?shù)一起,算出這6個(gè)分?jǐn)?shù)的平均值為N,那么M: N為( )
A. B.1 C. D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com