【題目】如圖,直線ABx軸交于點A10),與y軸交于點B0,-2).

1)求直線AB的解析式;

2)直線AB上是否存在點C,使△BOC的面積為2?若存在,求出點C的坐標;若不存在,請說明理由.

【答案】1;(2)存在,C(2,2)C(-2-6)

【解析】

1)設直線AB的解析式為,將點A1,0)、點B0,﹣2)分別代入解析式即可組成方程組,從而得到AB的解析式;

2)設點P的坐標為(x,y),根據(jù)三角形面積公式以及SBOC=2求出C的橫坐標,再代入直線即可求出y的值,從而得到其坐標.

解:(1)設直線AB的解析式為),

∵直線AB過點A1,0)、點B0,﹣2),

,解得:,

∴直線AB的解析式為;

2)設點C的坐標為(xy),∵SBOC=2,∴,解得x=±2,

x=2時,∴y=2×22=2,當時,

,

∴點C的坐標是(2,2)或C(-2,-6)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下圖是蜘蛛結網(wǎng)過程示意圖,一只蜘蛛先以為起點結六條線后,再從線上某點開始按逆時針方向依次在,,,上結網(wǎng),若將各線上的結點依次記為1、2、3、4、56、78、,那么第2020個結點在(

A.B.ODC.OED.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,拋物線軸交于點A和點C(2,0),與 軸交于點D,將△DOC繞點O逆時針旋轉90°后,點D恰好與點A重合,點C與點B重合.

(1)直接寫出點A和點B的坐標;

(2)求的值;

(3)已知點E是該拋物線的頂點,求證:AB⊥EB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AB是⊙O的直徑,AB2,點C,點D在⊙O上,CD1,直線AD,BC交于點E

(Ⅰ)如圖1,若點E在⊙O外,求∠AEB的度數(shù);

(Ⅱ)如圖2,若點E在⊙O內(nèi),求∠AEB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC為直角三角形,∠C=90°,BC=2cm,A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點C、B、E、F在同一條直線上,點B與點E重合.RtABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當點C與點F重合時停止.設RtABC與矩形DEFG的重疊部分的面積為ycm2,運動時間xs.能反映ycm2xs之間函數(shù)關系的大致圖象是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形的邊長為,點上一動點(不與、重合),點上一動點,且,則面積的最大值為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(探索發(fā)現(xiàn))

如圖①,是一張直角三角形紙片,,小明想從中剪出一個以為內(nèi)角且面積最大的矩形,經(jīng)過多次操作發(fā)現(xiàn),當沿著中位線、剪下時,所得的矩形的面積最大,隨后,他通過證明驗證了其正確性,并得出:矩形的最大面積與原三角形面積的比值為_____________

(拓展應用)

如圖②,在中,,邊上的高,矩形的頂點、分別在邊、上,頂點、在邊上,則矩形面積的最大值為_________.(用含的代數(shù)式表示)

(靈活應用)

如圖③,有一塊缺角矩形,,,,小明從中剪出了一個面積最大的矩形(為所剪出矩形的內(nèi)角),求該矩形的面積.

(實際應用)

如圖④,現(xiàn)有一塊四邊形的木板余料,經(jīng)測量,,且,木匠徐師傅從這塊余料中裁出了頂點在邊上且面積最大的矩形,求該矩形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是樓梯一部分示意圖,樓梯臺階寬度均為,高度均為,且,均與樓面垂直,點,分別是,的中點,,,

1)判斷的位置關系,并說明理由;

2)求的值;

3)求點到水平樓面的距離(精確到).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為增強學生的安全意識,我市某中學組織初三年級1000名學生參加了校園安全知識競賽,隨機抽取了一個班學生的成績進行整理,分為,,,四個等級,并把結果整理繪制成條形統(tǒng)計圖與扇形統(tǒng)計圖(部分),請依據(jù)如圖提供的信息,完成下列問題:

(1)請估計本校初三年級等級為的學生人數(shù);

(2)學校決定從得滿分的3名女生和2名男生中隨機抽取3人參加市級比賽,請求出恰好抽到2名女生和1名男生的概率.

查看答案和解析>>

同步練習冊答案