【題目】如圖是樓梯一部分示意圖,樓梯臺階寬度均為,高度均為,且,均與樓面垂直,點,分別是,的中點,,,.
(1)判斷與的位置關系,并說明理由;
(2)求的值;
(3)求點到水平樓面的距離(精確到).
【答案】(1)∥,理由見解析;(2)2;(3)
【解析】
(1)由與FB平行且相等,得出四邊形是平行四邊形,進而得出∥;
(2)延長、交于點K,連接,在Rt△中,求出tan∠,根據平行線的性質得出∠EFP=∠,由此得解;
(3)過點P作,交AF于點,根據的值得出與的數量關系,在Rt△中,運用勾股定理求出,進而求出到水平樓面的距離.
(1)∥,理由:
∵,均與樓面垂直
∴∥
又∵
∴=
∴四邊形是平行四邊形
∴∥;
(2)如圖,延長,交于點K,連接,
∵,均與樓面垂直,
∴△是直角三角形,
∵樓梯臺階寬度均為,,分別是,的中點,
∴KA=
∵樓梯高度均為,
∴
在Rt△中,tan∠=
∵∥,
∴∠EFP=∠
易證
∴∠=∠
∴tan∠EFP=tan∠=2;
(3)過點P作,交AF于點,
在Rt△中,tan∠EFP=2
∴
根據勾股定理,,即
∴cm
∴P到水平樓面的距離為16×5+15-=95-≈91.4cm.
科目:初中數學 來源: 題型:
【題目】小方與小輝在玩軍棋游戲,他們定義了一種新的規(guī)則,用軍棋中的“工兵”、“連長”、“地雷”比較大小,共有6個棋子,分別為1個“工兵”,2個“連長”,3個“地雷”游戲規(guī)則如下:①游戲時,將棋反面朝上,兩人隨機各摸一個棋子進行比賽,先摸者摸出的棋不放回;②“工兵”勝“地雷”,“地雷”勝“連長”,“連長”勝“工兵”;③相同棋子不分勝負.
(1)若小方先摸,則小方摸到“排長”的事件是 ;若小方先摸到了“連長”,小輝在剩余的5個棋子中隨機摸一個,則這一輪中小方勝小輝的概率為 .
(2)如果先拿走一個“連長”,在剩余的5個棋子中小方先摸一個棋子,然后小輝在剩余的4個棋子中隨機摸一個,求這一輪中小方獲勝的概率 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB與x軸交于點A(1,0),與y軸交于點B(0,-2).
(1)求直線AB的解析式;
(2)直線AB上是否存在點C,使△BOC的面積為2?若存在,求出點C的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的口袋中裝有4個分別標有數1,2,3,4的小球,它們的形狀、大小完全相同,小紅先從口袋里隨機摸出一個小球記下數為x,小穎在剩下的3個球中隨機摸出一個小球記下數為y,這樣確定了點P(x,y),請用“列表法”或“樹狀圖法”求點P(x,y)在函數y=-x+5圖象上的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知的頂點,,,若將先沿軸進行第一次對稱變換,所得圖形沿軸進行第二次對稱變換,軸對稱變換的對稱軸遵循軸、軸、軸、軸…的規(guī)律進行,則經過第2018次變換后,頂點坐標為()
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2019年底,2020年初我國爆發(fā)了新冠肺炎疫情,為了增加學生對疫情和肺炎的預防知識的了解,某學校利用網絡開展了相關知識的宣傳教育活動,為了解這次的宣傳效果,學校從全校3600名學生中隨機抽取200名學生進行知識測試(滿分100分,得分均為整數),并根據這200人的測試成績,制訂如下統(tǒng)計圖表:
(1) , ,成績最好的等級A所占的百分比;
(2)張亮在這次測試中成績?yōu)?/span>85分,你認為85分一定是這200名學生知識測試成績的中位數嗎?請簡要說明理由;
(3)如果80分以上(包括80分)為優(yōu)秀,請估計全校3600名學生中成績優(yōu)秀的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是反比例函數的圖象,點,分別在圖象的兩支上,以為對角線作矩形且軸.
(1)當線段過原點時,分別寫出與,與的一個等量關系式;
(2)當、兩點在直線上時,求矩形的周長;
(3)當時,探究與的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AC=BC=4,∠C=90°,點D在BC上,且CD=3DB,將△ABC折疊,使點A與點D重合,EF為折痕,則tan∠BED的值是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,圖1,圖2分別是某款高壓電塔的實物圖和示意圖電塔的底座AB與地面平齊,DF表示電塔頂端D到地面的距離,已知AF的長是2米,支架AC與地面夾角∠BAC=86°,頂端支架DC長10米,DC與水平線CE之間夾角∠DCE=45°,求電塔的高度DF.(sin86°=0.998,cos86°=0.070,tan86°=14.300,≈1.4,結果保留整數)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com