【題目】如圖,在平面直角坐標系中,菱形ABOC的頂點O在坐標原點,邊BO在x軸的負半軸上,∠BOC=60°,頂點C的坐標為(m,),反比例函數的圖像與菱形對角線AO交于D點,連接BD,當BD⊥x軸時,k的值是( )
A. B. - C. D. -
【答案】D
【解析】首先過點C 作CE⊥x 軸于點E,由∠BOC=60°,頂點C 的坐標為(m ,3 ),可求 得OC 的長,又由菱形ABOC 的頂點O 在坐標原點,邊BO 在x 軸的負半軸上,可求 得OB 的長,且∠AOB=30°,繼而求得DB 的長,則可求得點D 的坐標,又由反比例 函數 的圖象與菱形對角線AO 交D 點,即可求得答案.
解:過點C 作CE⊥x 軸于點E,
∵頂點C 的坐標為(m ,3 ),
∴OE= ﹣m ,CE=3,
∵菱形ABOC 中,∠BOC=60°,
∴OB=OC==6 ,∠BOD=∠BOC=30°,
∵DB⊥x 軸,
∴DB=OBtan30°=6× =2,
∴點D 的坐標為:(﹣6,2 ),
∵反比例函數 的圖象與菱形對角線AO 交D 點,
∴k=xy= ﹣12.
故選D.
“點睛”此題考查了菱形的性質以及反比例函數圖象上點的坐標特征.注意準確作出輔助線,
求得點D 的坐標是關鍵.
科目:初中數學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB∶BC=3∶2,∠DAB=60°,E在AB上,且AE∶EB=1∶2,F(xiàn)是BC的中點,過D分別作DP⊥AF于P,DQ⊥CE于Q,則DP∶DQ等于
A.3∶4 B.∶ C.∶ D.∶
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知如圖,在數軸上點A,B所對應的數是-4,4.
對于關于x的代數式N,我們規(guī)定:當有理數x在數軸上所對應的點為AB之間(包括點A,B)的任意一點時,代數式N取得所有值的最大值小于等于4,最小值大于等于-4,則稱代數式N是線段AB的封閉代數式.
例如,對于關于x的代數式|x|,當x=±4時,代數式|x|取得最大值是4;當x=0時,代數式|x|取得最小值是0,所以代數式|x|是線段AB的封閉代數式.
問題:
(1)關于x代數式|x-1|,當有理數x在數軸上所對應的點為AB之間(包括點A,B)的任意一點時,取得的最大值和最小值分別是____ ______.
所以代數式|x-1|__________(填是或不是)線段AB的封閉代數式.
(2)以下關x的代數式:
①;②x2+1;③x2+|x|-8;④|x+2|-|x-1|-1.
是線段AB的封閉代數式是__________,并證明(只需要證明是線段AB的封閉代數式的式子,不是的不需證明).
()關于x的代數式是線段AB的封閉代數式,則有理數a的最大值是__________,最小值是__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,D是BC的中點,E是AD的中點,過點A作AF∥BC交BE的延長線于點F.
(1)求證:△AEF≌△DEB;
(2)求證:四邊形ADCF是菱形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是一個正方體的表面展開圖,請回答下列問題:
(1)與面B、C相對的面分別是 ;
(2)若A=a3+a2b+3,B=a2b﹣3,C=a3﹣1,D=﹣(a2b﹣6),且相對兩個面所表示的代數式的和都相等,求E、F分別代表的代數式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知等腰Rt△ABC中,AB=AC,∠BAC=,點A、B分別在x軸和y軸上,點C的坐標為(6,2).
(1)如圖1,求A點坐標;
(2)如圖2,延長CA至點D,使得AD=AC,連接BD,線段BD交x軸于點E,問:在x軸上是否存在點M,使得△BDM的面積等于△ABO的面積,若存在,求點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】國家支持大學生創(chuàng)新辦實業(yè),提供小額無息貸款,學生王亮享受國家政策貸款36000元用于代理某品牌服裝銷售,已知該店代理的品牌服裝的進價為每件40元,該品牌服裝日銷售量y(件)與銷售價x(元/件)之間的關系可用圖中的一條線段(實線)來表示.該店應支付員工的工資為每人每天82元,每天還應支付其它費用為106元(不包含貸款).
(1)求日銷售量y(件)與銷售價x(元/件)之間的函數關系式;
(2)若該店暫不考慮償還貸款,當某天的銷售價為48元/件時,當天正好收支平衡(銷售額-成本=支出),求該店員工的人數;
(3)若該店只有2名員工,則該店至少需要多少天能還清所有貸款?此時每件服裝的價格應定為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們規(guī)定:若關于x的一元一次方程ax=b的解為b+a,則稱該方程為“和解方程”. 例如:方程2x=﹣4的解為x=﹣2,而﹣2=﹣4+2,則方程2x=﹣4為“和解方程”.
請根據上述規(guī)定解答下列問題:
(1)已知關于x的一元一次方程3x=m是“和解方程”,求m的值;
(2)已知關于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com