【題目】已知拋物線y=ax2+bx+c(a>0)與x軸的兩個(gè)交點(diǎn)分別為A(﹣1,0)、B(3,0),與y 軸的交點(diǎn)為點(diǎn)D,頂點(diǎn)為C,
(1)寫出該拋物線的對(duì)稱軸方程;
(2)當(dāng)點(diǎn)C變化,使60°≤∠ACB≤90°時(shí),求出a的取值范圍;
(3)作直線CD交x軸于點(diǎn)E,問:在y軸上是否存在點(diǎn)F,使得△CEF是一個(gè)等腰直角三角形?若存在,請(qǐng)求出a的值;若不存在,請(qǐng)說明理由.
【答案】(1)對(duì)稱軸x=1。2)當(dāng)點(diǎn)C變化,使60°≤∠ACB≤90°時(shí), ≤a≤; (3) a=或a=或a=.
【解析】(1)根據(jù)拋物線y=ax2+bx+c(a>0)與x軸的兩個(gè)交點(diǎn)分別為A(﹣1,0)、B(3,0),即可求出拋物線的對(duì)稱軸;
(2)分別求出當(dāng)∠ACB=60°和∠ACB=90°時(shí)a的值,進(jìn)而求出使60°≤∠ACB≤90°時(shí),求出a的取值范圍;
(3)分別寫出C點(diǎn)和D點(diǎn)的坐標(biāo)以及E點(diǎn)的坐標(biāo),再進(jìn)行分類討論證明△EHF≌△EKC,列出a的方程,解出a的值.
解:(1)∵拋物線y=ax2+bx+c(a>0)與x軸的兩個(gè)交點(diǎn)分別為A(﹣1,0)、B(3,0),
∴拋物線的對(duì)稱軸x==1;
(2)當(dāng)∠ACB=60°時(shí),△ABC是等邊三角形,即點(diǎn)C坐標(biāo)為(1,﹣2),
設(shè)y=a(x+1)(x﹣3),把C點(diǎn)坐標(biāo)(1,﹣2)代入,
解得a=;
當(dāng)∠ACB=90°時(shí),△ABC是等腰直角三角形,即點(diǎn)C坐標(biāo)為(1,﹣2),
設(shè)y=a(x+1)(x﹣3),把C點(diǎn)坐標(biāo)(1,﹣2)代入,
解得a=,
即當(dāng)點(diǎn)C變化,使60°≤∠ACB≤90°時(shí), ≤a≤;
(3)由于C(1,﹣4a),D(0,﹣3a),
設(shè)直線CD的解析式為y=kx+b,
即,
解得k=﹣a,b=﹣3a,
直線CD的解析式為y=﹣a(x+3),
故求出E點(diǎn)坐標(biāo)為(﹣3,0);
分兩類情況進(jìn)行討論;
如圖1,
△EHF≌△FKC,
即HF=CK=3,
4a+1=3,
解得a=;
②如圖2,
△EHF≌△FKC,
即EK=HF=3;
即4a=3,解得a=;
同理,當(dāng)點(diǎn)F位于y軸負(fù)半軸上,a=.
綜上可知在y軸上存在點(diǎn)F,使得△CEF是一個(gè)等腰直角三角形,且a=或a=或a=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).
(1)觀察猜想
圖1中,線段PM與PN的數(shù)量關(guān)系是 , 位置關(guān)系是;
(2)探究證明
把△ADE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;
(3)拓展延伸
把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫出△PMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一條開口向下的拋物線的頂點(diǎn)坐標(biāo)是(2,3),則這條拋物線有( )
A.最大值3
B.最小值3
C.最大值2
D.最小值﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C是以AB為直徑的半圓O上一點(diǎn),連結(jié)AC,BC,分別以AC,BC為邊向外作正方形ACDE,BCFG,DE,F(xiàn)G,弧AC,弧BC的中點(diǎn)分別是M,N,P,Q. 若MP+NQ=14,AC+BC=18,則AB的長是【 】
A. B. C. 13 D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知線段AB的兩個(gè)端點(diǎn)分別是A(4,﹣1),B(1,1)將線段AB平移后得到線段A′B′,若點(diǎn)A的坐標(biāo)為(﹣2,2),則點(diǎn)B′的坐標(biāo)為( )
A.(﹣5,4)
B.(4,3)
C.(﹣1,﹣2)
D.(﹣2,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AB,分別以點(diǎn)A,B為圓心,大于 AB的長為半徑畫弧,兩弧相交于點(diǎn)C,Q,連接CQ與AB相交于點(diǎn)D,連接AC,BC.那么:
(1)∠ADC=;
(2)當(dāng)線段AB=4,∠ACB=60°時(shí),∠ACD=,△ABC的面積等于.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了迎接杭州G20峰會(huì),某校開展了設(shè)計(jì)“YJG20”圖標(biāo)的活動(dòng),下列圖形中既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com