【題目】某天上午7:30,小芳在家通過(guò)滴滴打車軟件打車前往動(dòng)車站搭乘當(dāng)天上午8:30的動(dòng)車.記汽車的行駛時(shí)間為t小時(shí),行駛速度為v千米/小時(shí)(汽車行駛速度不超過(guò)60千米/小時(shí)).根據(jù)經(jīng)驗(yàn),v,t的一組對(duì)應(yīng)值如下表:

V(千米/小時(shí))

20

30

40

50

60

T(小時(shí))

0.6

0.4

0.3

0.25

0.2

(1)根據(jù)表中的數(shù)據(jù)描點(diǎn),求出平均速度v(千米/小時(shí))關(guān)于行駛時(shí)間t(小時(shí))的函數(shù)表達(dá)式;

(2)若小芳從開(kāi)始打車到上車用了10分鐘,小芳想在動(dòng)車出發(fā)前半小時(shí)到達(dá)動(dòng)車站,若汽車的平均速度為32千米/小時(shí),小芳能否在預(yù)定的時(shí)間內(nèi)到達(dá)動(dòng)車站?請(qǐng)說(shuō)明理由;

(3)若汽車到達(dá)動(dòng)車站的行駛時(shí)間t滿足0.3<t<0.5,求平均速度v的取值范圍.

【答案】(1)v=;(2)若汽車的平均速度為32千米/小時(shí),小芳不能在預(yù)定的時(shí)間內(nèi)到達(dá)動(dòng)車站;(3)平均速度v的取值范圍是24<v<40

【解析】

(1)根據(jù)表格中數(shù)據(jù),可知vt的反比例函數(shù),設(shè)v=,利用待定系數(shù)法求出k即可;

(2)根據(jù)時(shí)間t=小時(shí),求出速度,即可判斷;

(3)根據(jù)自變量的取值范圍,求出函數(shù)值的取值范圍即可.

(1)根據(jù)表格中數(shù)據(jù),可知v=

v=20時(shí),t=0.6,

k=20×0.6=12,

v= (t≥0.2).

(2)1﹣-=,

t=時(shí),v==36>32,

∴若汽車的平均速度為32千米/小時(shí),小芳不能在預(yù)定的時(shí)間內(nèi)到達(dá)動(dòng)車站;

(3)0.3<t<0.5,

24<v<40,

答:平均速度v的取值范圍是24<v<40.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點(diǎn)D,過(guò)DDE⊥AC,垂足為E.

(1)證明:DE⊙O的切線;

(2)BC=4,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)B、C、D在同一條直線上,△ABC△CDE都是等邊三角形.BEACF,ADCEH,

求證:△BCE≌△ACD;

求證:CF=CH;

判斷△CFH的形狀并說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“C919”大型客機(jī)首飛成功,激發(fā)了同學(xué)們對(duì)航空科技的興趣,如圖是某校航模興趣小組獲得的一張數(shù)據(jù)不完整的航模飛機(jī)機(jī)翼圖紙,圖中ABCD,AMBNED,AEDE,請(qǐng)根據(jù)圖中數(shù)據(jù),求出線段BECD的長(zhǎng).(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,結(jié)果保留小數(shù)點(diǎn)后一位)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y=mx+n與反比例函數(shù)y= ,其中mn<0,m、n均為常數(shù),它們?cè)谕蛔鴺?biāo)系中的圖象可以是(  )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊥BC,DC⊥BC,EBC上一點(diǎn),使得AE⊥DE;

(1)求證:△ABE∽△ECD;

(2)AB=4,AE=BC=5,求CD的長(zhǎng);

(3)當(dāng)△AED∽△ECD時(shí),請(qǐng)寫出線段AD、AB、CD之間數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ACCB,OAB的中點(diǎn),CA與⊙O相切于點(diǎn)E,CO交⊙O于點(diǎn)D

1)求證:CB是⊙O的切線;

2)若∠ACB80°,點(diǎn)P是⊙O上一個(gè)動(dòng)點(diǎn)(不與D,E兩點(diǎn)重合),求∠DPE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,直線y1x+1在平面直角坐標(biāo)系xOy中.

1)在平面直角坐標(biāo)系xOy中畫出y2=﹣2x+4的圖象;

2)求y1y2的交點(diǎn)坐標(biāo);

3)根據(jù)圖象直接寫出當(dāng)y1y2時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角坐標(biāo)系中,M經(jīng)過(guò)原點(diǎn)O(0,0),點(diǎn)A,0)與點(diǎn)B(0,﹣1),點(diǎn)D在劣弧OA上,連接BDx軸于點(diǎn)C,且∠COD=∠CBO

(1)請(qǐng)直接寫出M的直徑,并求證BD平分∠ABO;

(2)在線段BD的延長(zhǎng)線上尋找一點(diǎn)E,使得直線AE恰好與M相切,求此時(shí)點(diǎn)E的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案