【題目】如圖,中,,點(diǎn)是內(nèi)部一點(diǎn),,點(diǎn)是邊上一點(diǎn),若平分,,則______°
【答案】80
【解析】
根據(jù)角平分線得到∠ACE=2∠ACD,再根據(jù)角的和差關(guān)系得到∠ECB =∠ACB-2∠ACD,然后利用外角定理得到∠ABC+∠ECB=100°,代換化簡得出∠ACB-∠ACD=50°,即∠DCB=50°,從而求出∠BDC即可.
∵CD平分∠ACE,
∴∠ACE=2∠ACD=2∠ECD,
∴∠ECB=∠ACB-∠ACE=∠ACB-2∠ACD,
∵∠AEC=100°,
∴∠ABC+∠ECB=100°,
∴∠ABC+∠ACB-2∠ACD=100°,
∵AB=AC,
∴∠ABC=∠ACB,
∴2∠ACB-2∠ACD=100°,
∴∠ACB-∠ACD=50°,即∠DCB=50°,
∵DB=DC,
∴∠DBC=∠DCB,
∴∠BDC=180°-2∠DCB=180°-2×50°=80°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為中的一條射線,點(diǎn)在邊上,于,交于點(diǎn),交于點(diǎn),于點(diǎn),交于點(diǎn),連接交于點(diǎn).
求證:四邊形為矩形;
若,試探究與的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1).如圖①,已知AB∥CD,求證:∠A+∠C=∠E
(2)直接寫出當(dāng)點(diǎn)E的位置分別如圖②、圖③、圖④的情形時∠A、∠C、∠AEC之間的關(guān)系.
②中∠C、∠A、∠AEC之間的關(guān)系為 ;
③中∠C、∠A、∠AEC之間的關(guān)系為 ;
④中∠C、∠A、∠AEC之間的關(guān)系為 ;
(3)在(2)中的3中情形中任選一種進(jìn)行證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,給出下列說法:
①;②方程的根為,;③;④當(dāng)時,隨值的增大而增大;⑤當(dāng)時,.
其中正確的個數(shù)是
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著地鐵和共享單車的發(fā)展,“地鐵+單車”已成為很多市民出行的選擇,李華從文化宮站出發(fā),先乘坐地鐵,準(zhǔn)備在離家較近的A,B,C,D,E中的某一站出地鐵,再騎共享單車回家,設(shè)他出地鐵的站點(diǎn)與文化宮距離為x(單位:千米),乘坐地鐵的時間y1(單位:分鐘)是關(guān)于x的一次函數(shù),其關(guān)系如下表:
地鐵站 | A | B | C | D | E |
x(千米) | 8 | 9 | 10 | 11.5 | 13 |
y1(分鐘) | 18 | 20 | 22 | 25 | 28 |
(1)求y1關(guān)于x的函數(shù)解析式;
(2)李華騎單車的時間(單位:分鐘)也受x的影響,其關(guān)系可以用y2=x2-11x+78來描述,請問:李華應(yīng)選擇在哪一站出地鐵,才能使他從文化宮回到家所需的時間最短?并求出最短時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長為4,AD是BC邊上的中線,F是AD邊上的動點(diǎn),E是AC邊上一點(diǎn).若AE=2,當(dāng)EF+CF取得最小值時,∠ECF的度數(shù)為( )
A. 20° B. 25° C. 30° D. 45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=,BC=8.
(1)動手操作:
利用尺規(guī)作以AC為直徑的圓O,并標(biāo)圓O與AB的交點(diǎn)D,與BC的交點(diǎn)E,連接DE、CE(保留作圖痕跡,不寫作法)
(2)綜合應(yīng)用:
在你所作的圖中,①求證:DE=CE;②求DC的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某蔬菜生產(chǎn)基地在氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18℃的條件下生長最快的新品種.圖是某天恒溫系統(tǒng)從開啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y(℃)隨時間x(小時)變化的函數(shù)圖象,其中BC段是雙曲線的一部分.請根據(jù)圖中信息解答下列問題:
(1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18℃的時間有多少小時?
(2)求k的值;
(3)當(dāng)x=16時,大棚內(nèi)的溫度約為多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“十一”黃金周的某一天,小王全家上午8時自駕小汽車從家里出發(fā),到“番茄農(nóng)莊”游玩,小汽車離家的距離(千米)與小汽車離家后時間(時)的關(guān)系可以用圖中的折線表示,根據(jù)圖像提供的有關(guān)信息,解答下列問題:
(1)“番茄農(nóng)莊”離家________千米;
(2)小王全家在“番茄農(nóng)莊”游玩了________小時;
(3)去時小汽車的平均速度是________千米/小時;
(4)回家時小汽車的平均速度是________千米/小時.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com