【題目】某游樂場部分平面圖如圖所示,C、E、A在同一直線上,D、E、B在同一直線上,測得A處與E處的距離為80 米,C處與D處的距離為34米,∠C=90°,∠BAE=30°.( ≈1.4, ≈1.7)
(1)求旋轉木馬E處到出口B處的距離;
(2)求海洋球D處到出口B處的距離(結果保留整數(shù)).
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點A坐標為(2,0),以OA為邊在第一象限內(nèi)作等邊△OAB,點C為x軸上一動點,且在點A右側,連接BC,以BC為邊在第一象限內(nèi)作等邊△BCD,連接AD交BC于E.
(1)①直接回答:△OBC與△ABD全等嗎?
②試說明:無論點C如何移動,AD始終與OB平行;
(2)當點C運動到使AC2=AEAD時,如圖2,經(jīng)過O、B、C三點的拋物線為y1 . 試問:y1上是否存在動點P,使△BEP為直角三角形且BE為直角邊?若存在,求出點P坐標;若不存在,說明理由;
(3)在(2)的條件下,將y1沿x軸翻折得y2 , 設y1與y2組成的圖形為M,函數(shù)y= x+ m的圖象l與M有公共點.試寫出:l與M的公共點為3個時,m的取值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,點D是BC邊上的一個動點(不與B、C重合),在AC上取一點E,使∠ADE=30°.
(1)求證:△ABD∽△DCE;
(2)設BD=x,AE=y,求y關于x的函數(shù)關系式并寫出自變量x的取值范圍;
(3)當△ADE是等腰三角形時,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O為等腰△ABC的外接圓,直徑AB=12,P為弧 上任意一點(不與B,C重合),直線CP交AB延長線于點Q,⊙O在點P處切線PD交BQ于點D,下列結論正確的是 . (寫出所有正確結論的序號) ①若∠PAB=30°,則弧 的長為π;②若PD∥BC,則AP平分∠CAB;
③若PB=BD,則PD=6 ;④無論點P在弧 上的位置如何變化,CPCQ為定值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y= x2+bx+c經(jīng)過點B(3,0),C(0,﹣2),直線l:y=﹣ x﹣ 交y軸于點E,且與拋物線交于A,D兩點,P為拋物線上一動點(不與A,D重合).
(1)求拋物線的解析式;
(2)當點P在直線l下方時,過點P作PM∥x軸交l于點M,PN∥y軸交l于點N,求PM+PN的最大值.
(3)設F為直線l上的點,以E,C,P,F(xiàn)為頂點的四邊形能否構成平行四邊形?若能,求出點F的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)y= (x<0)的圖象經(jīng)過點A(﹣1,1),過點A作AB⊥y軸,垂足為B,在y軸的正半軸上取一點P(0,t),過點P作直線OA的垂線l,以直線l為對稱軸,點B經(jīng)軸對稱變換得到的點B′在此反比例函數(shù)的圖象上,則t的值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】[發(fā)現(xiàn)]如圖∠ACB=∠ADB=90°,那么點D在經(jīng)過A,B,C三點的圓上(如圖①)
[思考]如圖②,如果∠ACB=∠ADB=a(a≠90°)(點C,D在AB的同側),那么點D還在經(jīng)過A,B,C三點的⊙O上嗎?
我們知道,如果點D不在經(jīng)過A,B,C三點的圓上,那么點D要么在⊙O外,要么在⊙O內(nèi),以下該同學的想法說明了點D不在⊙O外.請結合圖④證明點D也不在⊙O內(nèi).
【證】
[結論]綜上可得結論,如果∠ACB=∠ADB=α(點C,D在AB的同側),那么點D在經(jīng)過A,B,C三點的圓上,即:A、B、C、D四點共圓.
[應用]利用上述結論解決問題:
如圖⑤,已知△ABC中,∠C=90°,將△ACB繞點A順時針旋轉α度(α為銳角)得△ADE,連接BE、CD,延長CD交BE于點F;
(1)用含α的代數(shù)式表示∠ACD的度數(shù);
(2)求證:點B、C、A、F四點共圓;
(3)求證:點F為BE的中點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=﹣ x+2與拋物線y=a (x+2)2相交于A、B兩點,點A在y軸上,M為拋物線的頂點.
(1)請直接寫出點A的坐標及該拋物線的解析式;
(2)若P為線段AB上一個動點(A、B兩端點除外),連接PM,設線段PM的長為l,點P的橫坐標為x,請求出l2與x之間的函數(shù)關系,并直接寫出自變量x的取值范圍;
(3)在(2)的條件下,線段AB上是否存在點P,使以A、M、P為頂點的三角形是等腰三角形?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com