【題目】如圖,反比例函數(shù)y= (x<0)的圖象經(jīng)過點(diǎn)A(﹣1,1),過點(diǎn)A作AB⊥y軸,垂足為B,在y軸的正半軸上取一點(diǎn)P(0,t),過點(diǎn)P作直線OA的垂線l,以直線l為對稱軸,點(diǎn)B經(jīng)軸對稱變換得到的點(diǎn)B′在此反比例函數(shù)的圖象上,則t的值是( )

A.
B.
C.
D.

【答案】A
【解析】解:∵點(diǎn)A坐標(biāo)為(﹣1,1),
∴k=﹣1×1=﹣1,
∴反比例函數(shù)解析式為y=﹣ ,
∵OB=AB=1,
∴△OAB為等腰直角三角形,
∴∠AOB=45°,
∵PQ⊥OA,
∴∠OPQ=45°,
∵點(diǎn)B和點(diǎn)B′關(guān)于直線l對稱,
∴PB=PB′,BB′⊥PQ,
∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,
∴B′P⊥y軸,
∴點(diǎn)B′的坐標(biāo)為(﹣ ,t),
∵PB=PB′,
∴t﹣1=|﹣ |= ,
整理得t2﹣t﹣1=0,解得t1= ,t2= (不符合題意,舍去),
∴t的值為
故選:A.

根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征由A點(diǎn)坐標(biāo)為(﹣1,1)得到k=﹣1,即反比例函數(shù)解析式為y=﹣ ,且OB=AB=1,則可判斷△OAB為等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后軸對稱的性質(zhì)得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y軸,則點(diǎn)B′的坐標(biāo)可表示為(﹣ ,t),于是利用PB=PB′得t﹣1=|﹣ |= ,然后解方程可得到滿足條件的t的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一座鋼結(jié)構(gòu)橋梁的框架是△ABC,水平橫梁BC長18米,中柱AD高6米,其中D是BC的中點(diǎn),且AD⊥BC.
(1)求sinB的值;
(2)現(xiàn)需要加裝支架DE、EF,其中點(diǎn)E在AB上,BE=2AE,且EF⊥BC,垂足為點(diǎn)F,求支架DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題
(1)計(jì)算:6cos45°+( ﹣1+( ﹣1.73)0+|5﹣3 |+42017×(﹣0.25)2017
(2)先化簡,再求值:( ﹣a+1)÷ + ﹣a,并從﹣1,0,2中選一個合適的數(shù)作為a的值代入求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某太陽能熱水器的橫截面示意圖如圖所示,已知真空熱水管AB與支架CD所在直線相交于點(diǎn)O,且OB=OD,支架CD與水平線AE垂直,∠BAC=∠CDE=30°,DE=80cm,AC=165cm.
(1)求支架CD的長;
(2)求真空熱水管AB的長.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游樂場部分平面圖如圖所示,C、E、A在同一直線上,D、E、B在同一直線上,測得A處與E處的距離為80 米,C處與D處的距離為34米,∠C=90°,∠BAE=30°.( ≈1.4, ≈1.7)
(1)求旋轉(zhuǎn)木馬E處到出口B處的距離;
(2)求海洋球D處到出口B處的距離(結(jié)果保留整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某課桌生產(chǎn)廠家研究發(fā)現(xiàn),傾斜12°﹣24°的桌面有利于學(xué)生保持軀體自然姿勢.根據(jù)這一研究,廠家決定將水平桌面做成可調(diào)節(jié)角度的桌面.新桌面的設(shè)計(jì)圖如圖1所示,AB可繞點(diǎn)A旋轉(zhuǎn),在點(diǎn)C處安裝一根可旋轉(zhuǎn)的支撐臂CD,AC=30cm.

(1)如圖2,當(dāng)∠BAC=24°時,CD⊥AB,求支撐臂CD的長.

(2)如圖3,當(dāng)∠BAC=12°,求AD的長(結(jié)果保留根號).
[參考數(shù)據(jù):sin24°=0.40,cos24°=0.91,tan24°=0.46,sin12°=0.20]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某條道路上通行車輛限速為60千米/時,在離道路50米的點(diǎn)P處建一個監(jiān)測點(diǎn),道路AB段為檢測區(qū)(如圖).在△ABP中,已知∠PAB=30°,∠PBA=45°,那么車輛通過AB段的時間在多少秒以內(nèi)時,可認(rèn)定為超速(精確到0.1秒)?(參考數(shù)據(jù): ≈1.41, ≈1.73,60千米/時= 米/秒)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年入春以來,湖南省大部分地區(qū)發(fā)生了罕見的旱災(zāi),連續(xù)幾個月無有效降水.為抗旱救災(zāi),駐湘某部計(jì)劃為駐地村民新建水渠3600米,為使水渠能盡快投入使用,實(shí)際工作效率是原計(jì)劃工作效率的1.8倍,結(jié)果提前20天完成修水渠任務(wù).問原計(jì)劃每天修水渠多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】青海新聞網(wǎng)訊:2016年2月21日,西寧市首條綠道免費(fèi)公共自行車租賃系統(tǒng)正式啟用.市政府今年投資了112萬元,建成40個公共自行車站點(diǎn)、配置720輛公共自行車.今后將逐年增加投資,用于建設(shè)新站點(diǎn)、配置公共自行車.預(yù)計(jì)2018年將投資340.5萬元,新建120個公共自行車站點(diǎn)、配置2205輛公共自行車.
(1)請問每個站點(diǎn)的造價(jià)和公共自行車的單價(jià)分別是多少萬元?
(2)請你求出2016年到2018年市政府配置公共自行車數(shù)量的年平均增長率.

查看答案和解析>>

同步練習(xí)冊答案