【題目】如圖,一只甲蟲在5×5的方格(每小格邊長為1)上沿著網(wǎng)格線運(yùn)動(dòng).它從A處出發(fā)去看望B、C、D處的其它甲蟲,規(guī)定:向上向右走為正,向下向左走為負(fù).如果從AB記為:A→B(+1,+4),從BA記為:B→A(-1,-4),其中第一個(gè)數(shù)表示左右方向,第二個(gè)數(shù)表示上下方向.

(1)圖中A→C( , ),B→C( , ),C→ (+1, );

(2)若這只甲蟲從A處去甲蟲P處的行走路線依次為(+2,+2),(+2,-1),(-2,+3),(-1,-2),請(qǐng)?jiān)趫D中標(biāo)出P的位置;

(3)若這只甲蟲的行走路線為A→B→C→D,請(qǐng)計(jì)算該甲蟲走過的路程;

(4)若圖中另有兩個(gè)格點(diǎn)M、N,且M→A(3-a,b-4),M→N(5-a,b-2),則N→A應(yīng)記為什么?

【答案】(1)3;4;2;0;D;;(2)見解析;應(yīng)記為 .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】神奇的數(shù)學(xué)世界是不是只有鍛煉思維的數(shù)字游戲?每天都在面對(duì)繁雜的數(shù)字計(jì)算?答案當(dāng)然是否定的,曼妙的數(shù)學(xué)暢游在迷人的數(shù)字和豐富多彩的圖形之間,將數(shù)與形巧妙地融匯在一起,不可分割.我們都知道,實(shí)數(shù)與數(shù)軸上的點(diǎn)一一對(duì)應(yīng),數(shù)軸上的線段可以由端點(diǎn)所對(duì)應(yīng)的實(shí)數(shù)確定,這是一維的數(shù)與形;增加到兩條數(shù)軸,可以形成平面直角坐標(biāo)系,這樣有序數(shù)對(duì)與平面內(nèi)的點(diǎn)一一對(duì)應(yīng),平面內(nèi)的多邊形及其內(nèi)容可以由多邊形的邊上所有點(diǎn)的坐標(biāo)所確定,這是二維的數(shù)與形.而在平面直角坐標(biāo)系中的圖形更是神秘,在平面內(nèi)任意畫一條(或多條)曲線(或直線),它(們)把平面分割成的部分都稱為區(qū)域,特別地,如果曲線首尾相接,那么形成的有限部分也稱為封閉區(qū)域.如何研究這些區(qū)域呢?當(dāng)然離不開數(shù),我們可以通過區(qū)域內(nèi)點(diǎn)的坐標(biāo)規(guī)律來刻畫圖形.反過來,我們也可以根據(jù)點(diǎn)坐標(biāo)的規(guī)律在平面直角坐標(biāo)系內(nèi)找到它們,畫出相應(yīng)的圖形.聰明的你看懂了嗎?試著做做看.

(1)分別解不等式,并把不等式的解集畫在同一個(gè)數(shù)軸上;

(2)點(diǎn)P(x,y)在平面直角坐標(biāo)系的第一象限,并且橫坐標(biāo)與縱坐標(biāo)分別滿足不等式,請(qǐng)畫出滿足條件的點(diǎn)P所在的最大區(qū)域,并求出區(qū)域的面積;

(3)去掉(2)中“點(diǎn)P在第一象限”這個(gè)條件,其余條件保持不變,求滿足條件的點(diǎn)P所在最大區(qū)域與平面直角坐標(biāo)系第二、四象限角平分線所圍成封閉區(qū)域的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,△ABC為等邊三角形,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合).以AD為邊作菱形ADEF,使∠DAF=60°,連接CF.

初步感知:
(1)如圖1,當(dāng)點(diǎn)D在邊BC上時(shí),①求證:∠ADB=∠AFC;②請(qǐng)直接判斷結(jié)論∠AFC=∠ACB+∠DAC是否成立;
(2)如圖2,當(dāng)點(diǎn)D在邊BC的延長線上時(shí),其他條件不變,結(jié)論∠AFC=∠ACB+∠DAC是否成立?請(qǐng)寫出∠AFC、∠ACB、∠DAC之間存在的數(shù)量關(guān)系,并寫出證明過程;
(3)如圖3,當(dāng)點(diǎn)D在邊CB的延長線上時(shí),且點(diǎn)A、F分別在直線BC的異側(cè),其他條件不變,請(qǐng)補(bǔ)全圖形,并直接寫出∠AFC、∠ACB、∠DAC之間存在的等量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABDEACDF,AC=DF下列條件中,不能判斷ABC≌△DEF的是( 。

A. AB=DE B. B=∠E C. EF=BC D. EFBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同慶中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備從軍躍體育用品商店一次性購買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),若購買3個(gè)足球和2個(gè)籃球共需310元,購買2個(gè)足球和5個(gè)籃球共需500元.

(1)購買一個(gè)足球、一個(gè)籃球各需多少元?

(2)根據(jù)同慶中學(xué)的實(shí)際情況,需從軍躍體育用品商店一次性購買足球和籃球共96個(gè),要求購買足球和籃球的總費(fèi)用不超過5720元,這所中學(xué)最多可以購買多少個(gè)籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校初三(1)班部分同學(xué)接受一次內(nèi)容為“最適合自己的考前減壓方式”的調(diào)查活動(dòng),收集整理數(shù)據(jù)后,老師將減壓方式分為五類,并繪制了圖1、圖2兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息解答下列問題.
(1)初三(1)班接受調(diào)查的同學(xué)共有多少名;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中的“體育活動(dòng)C”所對(duì)應(yīng)的圓心角度數(shù);
(3)若喜歡“交流談心”的5名同學(xué)中有三名男生和兩名女生;老師想從5名同學(xué)中任選兩名同學(xué)進(jìn)行交流,直接寫出選取的兩名同學(xué)都是女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(5分)(2015鞍山期末)小王某月手機(jī)話費(fèi)中的各項(xiàng)費(fèi)用統(tǒng)計(jì)情況見下列圖表,請(qǐng)你根據(jù)圖表信息完成下列各題:

項(xiàng)目

月功能費(fèi)

基本話費(fèi)

長途話費(fèi)

短信費(fèi)

金額/

5

50



1)請(qǐng)將表格補(bǔ)充完整;

2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)扇形統(tǒng)計(jì)圖中,表示短信費(fèi)的扇形的圓心角是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABCD中,點(diǎn)E在邊DC上,DE:EC=3:1,連接AE交BD于點(diǎn)F,則△DEF的面積與△BAF的面積之比為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,分別以點(diǎn)A和點(diǎn)B為圓心,以相同的長(大于AB)為半徑作弧,兩弧相交于點(diǎn)M和點(diǎn)N,作直線MNAB于點(diǎn)D,交BC于點(diǎn)E.若AC3,AB5,則DE等于(

A. 2 B. C. D.

查看答案和解析>>

同步練習(xí)冊答案