【題目】如圖,矩形ABCD的對(duì)角線AC、BD交于點(diǎn)O,CEBD,DEAC.

(1)證明:四邊形OCED為菱形;

(2)若AC=4,求四邊形CODE的周長.

【答案】(1)見解析; (2)8.

【解析】(1)由CE∥BD,DE∥AC可得四邊形OCED是平行四邊形由四邊形ABCD是矩形可得OD=OC,從而可得平行四邊形OCED是菱形;

(2)由AC=4,四邊形ABCD是矩形可得OC=2,結(jié)合四邊形CODE是菱形可得四邊形CODE的周長是:2×4=8.

(1∵CE∥BD,DE∥AC,

四邊形CODE為平行四邊形

四邊形ABCD是矩形,

∴OD=OC

四邊形CODE為菱形;

(2四邊形ABCD是矩形,

∴OC=OD=AC

∵AC=4,

∴OC=2,

由(1)知,四邊形CODE為菱形,

四邊形CODE的周長為=4OC=2×4=8.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD的對(duì)角線相交于O,給出下列 5個(gè)條件:ABCD ;ADBC;AB=CD ;④∠BAD=BCD;OA=OC.從以上5個(gè)條件中任選 2個(gè)條件為一組,能推出四邊形ABCD為平行四邊形的有(

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為2的菱形ABCD中,∠B=45°,AEBC邊上的高,將ABE沿AE所在直線翻折得ABE,ABCD邊交于點(diǎn)F,則BF的長度為(

A. 1 B. C. 2-2 D. 2-

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,描述了林老師某日傍晚的一段生活過程:他晚飯后,從家里散步走到超市,在超市停留了一會(huì)兒,馬上又去書店,看了一會(huì)兒書,然后快步走回家,圖象中的平面直角坐標(biāo)系中x表示時(shí)間,y表示林老師離家的距離,請(qǐng)你認(rèn)真研讀這個(gè)圖象,根據(jù)圖象提供的信息,以下說法錯(cuò)誤的是( )

A. 林老師家距超市1.5千米

B. 林老師在書店停留了30分鐘

C. 林老師從家里到超市的平均速度與從超市到書店的平均速度是相等的

D. 林老師從書店到家的平均速度是10千米/時(shí)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題8分)如圖,某住宅小區(qū)在施工過程中留下了一塊空地,已知AD=4米,CD=3米,ADC=90°,AB=13米,BC=12米,小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米100元,試問用該草坪鋪滿這塊空地共需花費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOB的邊OA上有一動(dòng)點(diǎn)P,從距離O點(diǎn)18cm的點(diǎn)M處出發(fā),沿線段MO,射線OB運(yùn)動(dòng),速度為2cm/s;動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿射線OB運(yùn)動(dòng),速度為1cm/s.P、Q同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間是t(s).

(1)當(dāng)點(diǎn)P在MO上運(yùn)動(dòng)時(shí),PO= cm (用含t的代數(shù)式表示);

(2)當(dāng)點(diǎn)P在MO上運(yùn)動(dòng)時(shí),t為何值,能使OP=OQ?

(3)若點(diǎn)Q運(yùn)動(dòng)到距離O點(diǎn)16cm的點(diǎn)N處停止,在點(diǎn)Q停止運(yùn)動(dòng)前,點(diǎn)P能否追上點(diǎn)Q?如果能,求出t的值;如果不能,請(qǐng)說出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是正方形ABCD對(duì)角線AC上一點(diǎn),點(diǎn)EBC上,且PE=PB

1)求證:PE=PD;

2)連接DE,試判斷∠PED的度數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于a、b定義兩種新運(yùn)算“*””:a*b=a+kb,ab=ka+b(其中k為常數(shù),且k≠0).若平面直角坐標(biāo)系xOy中的點(diǎn)P(a,b),有點(diǎn)P的坐標(biāo)為(a*b,ab)與之相對(duì)應(yīng),則稱點(diǎn)P為點(diǎn)P“k衍生點(diǎn)

例如:P(1,4)的“2衍生點(diǎn)P′(l+2×4,2×1+4),即P′(9,6).

(1)點(diǎn)P(﹣1,6)的“2衍生點(diǎn)”P′的坐標(biāo)為   

(2)若點(diǎn)P“3衍生點(diǎn)”P′的坐標(biāo)為(5,7),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,∠1=∠2,∠3=∠E試說明:A=∠EBC(請(qǐng)按圖填空,并補(bǔ)理由.)

證明:∵∠1=∠2 (已知),

∴________∥_______( ),

∴∠E=∠_______ ( ),

∵∠E=∠3 (已知),

∴∠3=∠____________ ( 等量代換 ),

_________________ (內(nèi)錯(cuò)角相等,兩直線平行),

∴∠A=∠EBC ( ).

查看答案和解析>>

同步練習(xí)冊(cè)答案