如圖,已知⊙O的直徑AB=6,E、F為AB的三等分點(diǎn),M、N為上兩點(diǎn),且∠MEB=∠NFB=60°,則EM+FN=  
延長(zhǎng)ME交⊙O于G,根據(jù)圓的中心對(duì)稱(chēng)性可得FN=EG,過(guò)點(diǎn)O作OH⊥MG于H,連接MO,根據(jù)圓的直徑求出OE,OM,再解直角三角形求出OH,然后利用勾股定理列式求出MH,再根據(jù)垂徑定理可得MG=2MH,從而得解.
解:如圖,延長(zhǎng)ME交⊙O于G,

∵E、F為AB的三等分點(diǎn),∠MEB=∠NFB=60°,
∴根據(jù)圓的對(duì)稱(chēng)性可得,F(xiàn)N=EG,
過(guò)點(diǎn)O作OH⊥MG于H,連接MO,
∵⊙O的直徑AB=6,
∴OE=OA﹣AE=×6﹣×6=3﹣2=1,
OM=×6=3,
∵∠MEB=60°,
∴OH=OE•sin60°=1×=
在Rt△MOH中,MH===
根據(jù)垂徑定理,MG=2MH=2×=,
即EM+FN=
故答案為:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖①,②,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為(4,0),以點(diǎn)為圓心,4為半徑的圓與軸交于,兩點(diǎn),為弦,軸上的一動(dòng)點(diǎn),連結(jié)。
(1)的度數(shù)為    
(2)如圖①,當(dāng)與⊙A相切時(shí),求的長(zhǎng);
(3)如圖②,當(dāng)點(diǎn)在直徑上時(shí),的延長(zhǎng)線(xiàn)與⊙A相交于點(diǎn),問(wèn)為何值時(shí),是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是⊙O的直徑,AC是弦,直線(xiàn)EF經(jīng)過(guò)點(diǎn)C,AD⊥EF于點(diǎn)D,∠DAC=∠BAC.
求證:EF是⊙O的切線(xiàn)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

用半徑為10cm,圓心角為216°的扇形作一個(gè)圓錐的側(cè)面,則這個(gè)圓錐的高是     cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,點(diǎn)軸的正半軸上,,.點(diǎn)從點(diǎn)出發(fā),沿軸向左以每秒1個(gè)單位長(zhǎng)的速度運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為秒.

(1)求點(diǎn)的坐標(biāo);
(2)當(dāng)時(shí),求的值;
(3)以點(diǎn)為圓心,為半徑的隨點(diǎn)的運(yùn)動(dòng)而變化,當(dāng)與四邊形的邊(或邊所在的直線(xiàn))相切時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,邊長(zhǎng)為2正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45度后得到正方形,則在旋轉(zhuǎn)過(guò)程中點(diǎn)D到D’的路徑長(zhǎng)是       

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,AB是⊙O的一條弦,點(diǎn)C是⊙O上一動(dòng)點(diǎn),且∠ACB=30°,點(diǎn)E、F分別是AC、BC的中點(diǎn),直線(xiàn)EF與⊙O交于G、H兩點(diǎn).若⊙O的半徑為7,則GE+FH的最大值為    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,AB為⊙O的直徑,C為⊙O外一點(diǎn),過(guò)點(diǎn)C作⊙O切線(xiàn),切點(diǎn)為B,連結(jié)AC交⊙O于D,∠C=38°.點(diǎn)E在AB右側(cè)的半圓上運(yùn)動(dòng)(不與A、B重合),則∠AED的大小是( 。

A.19°
B.38°
C.52°
D.76°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在半徑為5的⊙O中,AB、CD是互相垂直的兩條弦,垂足為P,且AB=CD=8,則OP的長(zhǎng)為  (  )

A.3         B.4
C.3    D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案